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Timestamp Synchronization of Concurrent Events 

Daniel Becker

Supercomputing is a key technological pillar of modern science and engineering, indispensable 
for solving critical problems of high complexity. However, to effectively utilize today’s super-
computing systems, scientists and engineers need powerful and robust software development 
tools. One technique widely used by such tools is event tracing. Recording time-stamped runtime 
events in event traces is especially helpful to understand the performance behavior of  parallel 
programs, since it enables the post-mortem analysis of communication and synchronization 
 patterns.

The accuracy of such analyses depends on the comparability of timestamps taken on different 
processors and may be adversely affected by nonsynchronized clocks. Inconsistent trace data 
may not only lead to false conclusions and confuse the user of trace-visualization tools but also 
may break tools if they rely on the correct event order to function properly. Although linear offset 
interpolation can restore the consistency of the trace data to some degree, time-dependent drifts 
and other inaccuracies may still disarrange the original succession of events.

The already familiar controlled logical clock algorithm accounts for such violations in point-to-
point communication. It is, however, not suitable for realistic applications because it ignores  
collective and shared-memory communication and – as a serial algorithm – offers only limited 
scalability. To address these shortcomings, the algorithm was (i) extended such that it also  
restores the event semantics of collective and shared-memory operations and (ii) parallelized  
to make it suitable for large-scale systems including computational grids. The extended and 
parallelized version was evaluated in practice by integrating it into the Scalasca trace-analysis 
framework and applying it to traces of realistic applications taken on single cluster systems and 
computational grids.

This publication was written at the Jülich Supercomputing Centre (JSC) which is an integral part  
of the Institute for Advanced Simulation (IAS). The IAS combines the Jülich simulation sciences 
and the supercomputer facility in one organizational unit. It includes those parts of the scientific 
institutes at Forschungszentrum Jülich which use simulation on supercomputers as their main 
research methodology.
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Abstract

Supercomputing is a key technological pillar of modern science and engineering, indispens-
able for solving critical problems of high complexity. However, to effectively utilize the
enormously complex large-scale computer systems available today, scientists and engineers
need powerful and robust software development tools. One technique widely used by such
tools is event tracing with a broad spectrum of applications ranging from performance
analysis, performance prediction and modeling to debugging. In particular, event traces are
helpful in understanding the performance behavior of parallel programs since they allow the
in-depth analysis of communication and synchronization patterns. The accuracy of such
analyses depends on the comparability of timestamps taken on different processors and
may be adversely affected by non-synchronized clocks leading to inaccurate relative event
timings. Such inaccuracies may cause a given interval to appear shorter or longer than it
actually was, or introduce violations of the logical event order, which requires a message to
be received only after it has been sent. Inconsistent trace data may not only lead to false
conclusions, for instance, when the impact of communication patterns is quantified, but may
also confuse the user of trace-visualization tools by causing message arrows to point backward
in time-line views. Even more strikingly, trace-analysis tools may also cease to work in a
satisfactory manner if they rely on the correct order to function properly. Although linear offset
interpolation can restore the consistency of the trace data to some degree, time-dependent drifts
and other inaccuracies may still disarrange the original sequence of events, as shown in a study
conducted as a part of this Ph.D. thesis.

The already familiar controlled logical clock algorithm accounts for such violations in point-
to-point communication by shifting message events in time as much as needed while trying to
preserve the length of local intervals. This algorithm is, however, not suitable for realistic
applications because (i) it ignores collective and shared-memory operations and (ii) as a
serial algorithm it offers only limited scalability. This thesis addresses these shortcomings
by extending the algorithm to restore event semantics related to collective and shared-memory
operations and by parallelizing the extended version to make it suitable for large-scale systems
including computational grids. The basic idea behind the semantic extension is to consider
collective and shared-memory operations as being composed of multiple point-to-point mes-
sages, taking the semantics of the different flavors of these operations into account. In order to
accomplish the correction in a scalable way, both distributed memory and parallel processing
capabilities are exploited by processing separate local trace files in parallel and replaying the
original communication on as many CPUs as were used to execute the target application itself.
To employ the replay mechanism in computational grids, this work also defines the necessary
infrastructure to accurately measure clock offsets in distributed environments with hierarchical
networks.

The methodology was evaluated in practice by integrating the extended and parallelized algo-
rithm into the Scalasca trace-analysis framework and applied to traces of realistic applications
taken on single cluster systems and computational grids. The thesis shows that the algorithm
eliminates inconsistent timings of concurrent events while only marginally changing the length
of intervals between local events – even if wide-area communication is involved. Scalability
is demonstrated with up to 4,096 application processes.





Kurzfassung

Supercomputing ist eine Schlüsseltechnologie moderner Wissenschaft und Technik, die zur
Beantwortung schwieriger und komplexer Fragen unersetzlich ist. Zur effizienten Nutzung
der neuesten Supercomputersysteme benötigen Wissenschaftler und Ingenieure mächtige
und robuste Softwarewerkzeuge. Dabei ist das Aufzeichnen von Laufzeitereignissen in
Ereignisspuren eine etablierte Technik sowohl zur Leistungsanalyse, Leistungsvorhersage und
Modellierung als auch zum Debugging. Grund für die besondere Eignung der Ereignis-
spuren zur Untersuchung des Leistungsverhaltens paralleler Programme ist ihre Fähigkeit,
die Analyse von Kommunikations- und Synchronisationsmustern zu ermöglichen. Die
Genauigkeit dieser Untersuchungen hängt dabei von der Vergleichbarkeit der Zeitstempel
einzelner nebenläufiger Ereignisse ab und kann daher durch nicht synchrone Prozessoruhren,
die ungenaue Zeiten liefern, vermindert werden. Solche Ungenauigkeiten können sowohl
die Länge eines gegebenen Intervalls kürzer oder länger erscheinen lassen, als auch zu
Verletzungen der logischen Ereignisabfolge in Ereignisspuren führen, welche verlangt, dass
eine Nachricht erst empfangen wird, nachdem sie gesendet wurde. Inkonsistente Ereignis-
spuren können somit nicht nur zu falschen Schlussfolgerungen, zum Beispiel während der
Quantifizierung des Einflusses einzelner Kommunikationsmuster führen, sondern auch die
Anwender von Visualisierungswerkzeugen verwirren, indem rückwärts gerichtete und somit
in die Vergangenheit weisende Nachrichtenpfeile angezeigt werden. Besonders auffällig sind
dabei diejenigen Analysewerkzeuge, die ihre Bearbeitung sogar gänzlich abbrechen, da sie die
korrekte logische Abfolge von Ereignissen zur exakten Verarbeitung voraussetzen. Obwohl
eine lineare Interpolation des Uhrenabstandes die Konsistenz der Ereignisspuren zu einem
gewissen Grad wiederherstellen kann, können zeitabhängige Uhrenabweichungen und weitere
Ungenauigkeiten die ursprüngliche Abfolge von Ereignissen ändern, wie in einer Studie als
Teil dieser Doktorarbeit gezeigt wird.
Der schon bekannte Algorithmus der geregelten logischen Uhr korrigiert solche Verletzungen
in Punkt-zu-Punkt Kommunikationen durch eine ausreichende zeitliche Verschiebung von
Nachrichtenereignissen, wobei versucht wird, die Intervalllänge zwischen lokalen Ereignissen
zu erhalten. Dieser Algorithmus ist jedoch für realistische parallele Programme nicht geeignet,
weil er (i) kollektive Operationen sowie Operationen, die einen gemeinsam genutzten Spe-
icherbereich ansprechen, ignoriert und (ii) als serieller Algorithmus nur eingeschränkte
Skalierbarkeit aufweist. Diese Arbeit behebt die beschriebenen Limitierungen zum einen
durch die Erweiterung des Algorithmus zur Wiederherstellung von Ereignissemantiken in den
oben angeführten Operationen und zum anderen durch die Parallelisierung des erweiterten
Algorithmus zur Anwendung auf Supercomputern und Grids. Der Semantikerweiterung liegt
die Idee zugrunde, die genannten Operationen zusammengesetzt aus einzelnen Punkt-zu-
Punkt Nachrichten aufzufassen und hierbei die verschiedenen Arten dieser Operationen zu
berücksichtigen. Um die Korrektur skalierbar auszuführen, werden der verteilte Speicher und
die parallelen Rechenressourcen zum einen durch eine parallele Verarbeitung einzelner lokaler
Ereignisspuren und zum anderen durch das Nachspielen der ursprünglichen Kommunikation
der Zielanwendung ausgenutzt. Um das beschriebene Verfahren auch in Grids einzusetzen,
definiert die vorliegende Arbeit die notwendige Infrastruktur zur genauen Messung des Uhren-
abstandes in verteilten Umgebungen mit hierarchischen Netzwerken.
Die Methodik wird evaluiert anhand der Integration des erweiterten und parallelisierten Algo-
rithmus in die Leistungsanalyseumgebung Scalasca und deren Anwendung auf Ereignisspuren
realistischer paralleler Programme, die auf verschiedenen Clustern und Grids aufgezeichnet
wurden. Die vorliegende Arbeit zeigt dabei auf, dass der Algorithmus inkonsistente Intervalle
beseitigt und zeitgleich die Länge von Intervallen zwischen lokalen Ereignissen nur marginal
ändert – selbst wenn Weitverkehrsnetze eingesetzt werden. Zudem wird die Skalierbarkeit mit
bis zu 4.096 Prozessoren gezeigt.
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Chapter 1

Introduction

Supercomputing is a key technological pillar of modern science and engineering, indispens-
able for solving critical problems of high complexity. World-wide efforts to build machines
with performance levels in the petaflops range acknowledge that the requirements of many
key applications can only be met by the most advanced custom-designed large-scale computer
systems. However, as a prerequisite for their productive use, the HPC community needs
powerful and robust software tools that make the development of parallel applications both
more effective and more efficient. Such tools not only help to improve the scalability
characteristics of scientific codes and thus expand their potential, but also allow domain
experts to concentrate on the science underneath rather than to spend a major fraction of their
time debugging their code and tuning it for a particular machine.

1.1 Parallel Computers

Todays supercomputers are most commonly parallel computers, executing one program on
multiple processors in parallel and so jointly computing the solution of a large scientific
or technical problem. Often, such parallel computers are classified based on the memory
architecture and referred to as shared-memory or distributed-memory architectures [48]. On
shared-memory machines, all processors share a common address space, whereas distributed-
memory machines exhibit multiple private address spaces. Shared-memory architectures are
classified as either symmetric shared-memory or distributed shared-memory multiprocessors.
Symmetric shared-memory multiprocessors (SMP) have a symmetric relationship to memory
and include systems like SUN Sunfire or IBM eserver nodes [48]. This style of architecture
is also called uniform memory access (UMA), arising from the fact that all processors have a
uniform latency to memory. Architectures that support shared memory in a distributed fashion
are called distributed shared-memory (DSM) multiprocessors. Such distributed shared-
memory architectures have variable access times to a memory address and are called non-
uniform memory access (NUMA). In addition, cache coherent non-uniform memory access
(ccNUMA) architectures, such as SGI Origin/Altix, are similar to NUMA architectures but
use protocols to guarantee cache coherence across the machine.

In contrast, distributed-memory architectures, often referred to as massively parallel proces-
sors (MPP), do not provide a common address space but provide interconnection networks
to exchange data among processors. The data exchange is typically done by sending and
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Figure 1.1: Schematic view of a cluster with multiple nodes and its interconnection
network.

receiving messages between communication peers, since each network node has its own
local memory which is not accessible from another processor. Parallel computers that use
this message-passing approach are called clusters. The individual nodes of a cluster are
either commodities or customized, likewise the interconnection network. The nodes and
networks of a commodity cluster are usually standard components, whereas the nodes and
the interconnect of a custom cluster are customized and more tightly integrated than in a
commodity cluster. Typical representatives of custom clusters are IBM Blue Gene and Cray
XT systems. Driven by the availability of inexpensive commodity components produced in
large quantities, commodity clusters now represent the majority of supercomputing systems,
exhibiting a vast diversity in terms of architecture, interconnect technology, and software
environment. Commodity clusters include, but are not restricted to, Beowulf-class PC clusters
which are composed of commodity hardware, a dedicated interconnection network, and an
open-source software stack [30]. Often, these systems are also referred to as Linux clusters
or PC clusters. A Beowulf that is built entirely using commodity components is referred to
as Class I, whereas Class II clusters may use commodity components along with specialized
hardware [87]. In addition, commodity clusters also include other “homemade” clusters [48],
for instance, consisting of locally dispersed workstations (e.g., in different offices) linked by a
local-area network. Finally, a single cluster node usually consists of many processors sharing
a common address space and so clusters may be regarded as coupled SMP systems. Figure 1.1
shows the schematic view of a cluster with multiple nodes and its interconnection network.

Nowadays, clusters represent the majority of supercomputer systems because a low devel-
opment effort and cheap standard components make their use popular [48]. Given that the
processors of a cluster use the interconnection network for exchanging data among processors,
the network performance has a major influence on the overall performance of the system.
Therefore, different types of networks are used on a cluster in order to increase its perfor-
mance. On-chip networks are used for interconnecting functional units, caches, and processors
within chips or multichip devices. System-area networks are used for interprocessor and
processor-memory interconnections within parallel computers. In contrast to custom-built
solutions (e.g., IBM Blue Gene and Cray XT), commodity clusters often leverage InfiniBand
and Myrinet networks [55, 70]. Finally, local-area networks (LAN) usually connect computer
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systems within a single building, whereas wide-area networks (WAN) connect geographically
dispersed computers.

Operating systems are used to manage the resources of a parallel computer such as the CPUs,
main memory, and network [86]. On shared-memory architectures, one operating system
image manages all hardware resources including all the CPUs and the shared memory. In
contrast, on distributed memory architectures, each processor typically runs its own OS kernel
managing local resources such as the local CPU and memory. In addition, each processor runs
further software modules supporting distributed operating system services such as the handling
of interprocessor communication. Note that the processor-local operating system may also use
globally accessible modules responsible for centralized services (e.g., file-system services or
batch system).

1.2 Programming Models

In order to parallelize programs, different parallel programming models are available. Similar
to the classification of parallel computers, parallel programming models are classified either
as multithreading or as message-passing models [23, 90]. In a multithreading model, one
parallel program is concurrently executed by many threads representing execution states that
are able to process an instruction stream. As all threads can access the same memory, data
exchange among threads is done via shared-memory variables. Synchronization mechanisms,
such as locking specific variables or barrier constructs, are used to avoid race conditions.
For instance, OpenMP (Open specifications for Multi Processing) [75] is a widespread
programming interface realizing a multithreading programming model. It assumes that one
master thread creates a team of worker threads once a parallel region has been entered and
terminates it after the parallel region has been left. OpenMP provides directives and library
calls to coordinate the accesses to shared data, ensuring that certain operations are performed
by only one thread at a time.

The programming model on distributed-memory systems is referred to as message passing.
This model assumes that programs are executed by one or more processes, each of which
has its own private address space. For instance, the MPI (Message Passing Interface) [66]
communication library defines a de-facto standard for message passing and is available on
most parallel computers. MPI provides means to execute multiple processes in parallel, along
with operations for sending and receiving messages, and for performing collective operations
across data distributed among different processes. The latest version, MPI 2.1, additionally
supports parallel I/O and one-sided communication assuming that a process may interact
directly with remote memory across a network to read and write data anywhere on a machine.

Parallel programs can also use message passing and multithreading in combination. Such
programs are often referred to as hybrid programs. In particular, MPI and OpenMP may be
used together in a program, typically on MPPs that consist of multiple SMPs. In such a hybrid
programming model, each thread can issue MPI calls. However, MPI may be implemented
in environments where threads are not supported or perform poorly, and therefore, it is not
required that an MPI implementation fulfills the above requirement. For this reason, MPI
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Figure 1.2: Schematic view of a metacomputer including its external and internal
networks.

provides software functions to query the respective level of thread support. If only one thread
is allowed to be executed at a time, the thread level is single. Once multiple threads per process
are allowed, the thread level may be funneled, serialized, or multiple. In funneled mode, only
the master thread makes MPI calls, whereas in serialized mode all threads make MPI calls but
never concurrently. Finally, if multiple threads can make MPI calls without restrictions, the
thread level is called multiple.

1.3 Metacomputing Environments

Often, the solution of compute-intensive problems requires more processing power than is
available on a single cluster because the problem cannot be solved within a reasonable
time frame on a single machine or because the solution must be calculated under real-time
conditions. For this reason, the processing power and memory capacity of multiple clusters
can be combined to form a more powerful metacomputer [84] that appears to its users as
a single coherent system. Such a metacomputer usually consists of several independent
and potentially heterogeneous and geographically dispersed clusters (metahosts), which are
connected by network links to a single unit. Figure 1.2 shows the schematic view of a
metacomputer, in which metahosts are internally connected via local area networks, whereas
distant metahosts, which often belong to different organizations, are linked by a wide-area
interconnection. In this sense, a metacomputing environment can be regarded as a special type
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of computational grid. Due to their distributed nature, the predominant programming model
for metacomputers is message passing, which may be combined with multithreading used
within the nodes of a metahost. Apart from being a pure aggregation of computational power,
such a metacomputer can also provide a suitable platform for multi-physics simulations, where
the different submodels may be optimized for different architectures.

However, although applications can benefit from the increased parallelism offered by a
metacomputer, as supported by a recent study by Wong and Goscinski [95], achieving
satisfactory application performance is difficult. Often, applications have to deal with a
hierarchy of latencies and bandwidths. In general, the heterogeneity of metahost hardware
including differences in networks and architectures complicate load balancing. Given the fact
that performance optimization for a single cluster is already a non-trivial task that requires
substantial tool support, we can argue that this is even more important for metacomputing
environments.

1.4 Event Tracing

Software tools are necessary to investigate the runtime behavior of parallel programs. Given
that a computer changes its state in discrete intervals, it is possible to model the runtime
behavior of a single program as a sequence of state changes. A single state change can
be regarded as an event happening at a given time and location. Event tracing regards the
execution of a program as a sequence of events, each with an associated event type (e.g.,
entering a code region). Such an event type is defined by a set of attributes (e.g., timestamp,
location) that may be shared by multiple event types depending on the level of specialization.
An event model defines the event types with their related attributes and constraints, for
example, regarding the correct event order. Obviously, the selection of event types observed
determines the expressiveness and granularity an event trace can provide.

Event tracing is a widely used technique by software tools with a broad spectrum of applica-
tions ranging from debugging, performance modeling and prediction to performance analysis.
For instance, as programming user-defined process topologies is often error-prone, Huband
et al. [53] describe a trace-based topology debugger that exploits topological information to
abstract, identify, and report patterns of expected and unexpected communication behavior.
In addition, performance models can be derived from event traces and subsequently used for
performance prediction. Labarta et al. [60] determine such performance models as functions of
specific parameters such as the processor count or speed and the network latency or bandwidth.
Based on event traces taken on a small number of processors, Rodriguez et al. [82] use these
performance models to predict the program performance when running on a large number of
processors, enabling the tuning of message-passing programs before actually running them on
those large configurations.

Moreover, event traces can be searched for potential performance bottlenecks either manually
or automatically [90]. Manual trace analysis transforms event traces into a visual representa-
tion of the runtime behavior, which can be interactively explored in graphical trace browsers
such as Vampir [71] and Paraver [60]. These trace browsers allow the fine-grained investi-
gation of an application’s runtime behavior and provide statistical summaries, translating a

5



1. INTRODUCTION

Figure 1.3: Graphical trace browser Vampir: Time-line visualization of an applica-
tion’s runtime behavior.

given event trace into a variety of graphical views including state diagrams, activity charts,
and zoomable time-line displays. Figure 1.3 shows a time-line visualization of an application
running with 24 processes. Such a time-line visualization consists of boxes indicating the
execution of different code sections, arrows indicating point-to-point communication, and
dashed lines indicating collective communication. Here, the time spent in MPI calls is
visualized through red boxes, whereas the time spent in user regions is visualized through grey
boxes. In addition, point-to-point messages are shown with black arrows, whereas collective
communication is shown with purple dashed lines. As a consequence, developers can easily
identify different execution and communication phases of the application. Using the zooming
functionality, they can subsequently investigate the runtime behavior at any level of granularity
in or between those phases. However, in view of the large amounts of data generated on
contemporary parallel computers, performance bottlenecks can be identified more efficiently
by automatically searching the trace data for their occurrence. In addition to usually being
faster than a manual analysis performed using a trace browser, this approach is also guaranteed
to cover the entire event trace and not to miss any instances.

Automatic trace analysis transforms the event trace into a compact representation of the
performance behavior in terms of inefficiency patterns. For instance, the KOJAK [93] and
Scalasca [92] toolset automatically search event traces of parallel programs for patterns
of inefficient behavior, classify detected instances by category, and quantify the associated
performance penalty. This allows developers to study the performance of their applications
on a higher level of abstraction, while requiring significantly less time and expertise than
a manual analysis. A distinctive feature of both tools is their ability to identify wait states
that potentially occur as a result of unevenly distributed workloads. Especially when trying
to scale communication intensive applications to large processor counts, such wait states can
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Figure 1.4: Schematic overview of the performance data flow in Scalasca. Grey rect-
angles denote programs and white rectangles with the upper right corner
turned down denote files. Stacked symbols denote multiple instances of
programs, files, or data objects running or being processed in parallel.

present severe challenges to achieving good performance. Given that KOJAK analyzes a single
global trace file sequentially, its processing scheme is limited as soon as it targets traces taken
on such large processor counts. In view of rapidly increasing parallelism, it is crucial that
the trace analysis scales to large numbers of application processes [19, 22, 44]. In addition,
exponentially rising numbers of cores and increased concurrency levels place even higher
scalability demands on this trace analysis [73, 88]. As KOJAK’s successor, Scalasca has been
specifically designed for use on large-scale systems including IBM Blue Gene and Cray XT,
but is also well-suited for small- and medium-scale clusters. Instead of sequentially processing
a single global trace file, Scalasca implements a scalable trace-analysis approach [44] by pro-
cessing separate process-local trace files in parallel and replaying the original communication
on as many CPUs as were used to execute the target application itself. Since trace processing
capabilities (i.e., processors and memory) grow proportionally with the number of application
processes, this approach guarantees good scalability at very large scales.

Scalasca supports an incremental performance analysis process that integrates runtime sum-
maries with in-depth studies of concurrent behavior via event tracing, adopting a strategy
of successively refined measurement configurations. Figure 1.4 shows the basic analysis
workflow supported by Scalasca. Before any performance data can be collected, the target ap-
plication must be instrumented. When running the instrumented code on the parallel machine,
the user can choose to generate a summary report (“profile”) with aggregate performance
metrics for individual function call paths, and/or event traces recording individual runtime
events from which a profile can later be produced. Summarization is particularly useful to
obtain an overview of the performance behavior and for local metrics such as those derived
from hardware counters [18]. Since traces tend to rapidly become very large, scoring of a
summary report is usually recommended, as this allows instrumentation and measurement
to be optimized. When tracing is enabled, each process generates a trace file containing
records for its process-local events. After program termination, Scalasca loads the trace
files into main memory and searches them in parallel for patterns of inefficient performance
behavior using the above-mentioned replay mechanism. The result is a trace-analysis report
similar in structure to the summary report but enriched with higher-level communication
and synchronization inefficiency metrics. Both summary and trace-analysis reports contain
performance metrics for every function call path and process/thread which can be interactively
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Figure 1.5: Scalasca’s trace-analysis report.

examined in the provided analysis-report browser shown in Figure 1.5. The tree in the left
window pane displays patterns of inefficient performance behavior arranged in a specialization
hierarchy. In addition, the middle window pane shows the distribution of the selected pattern’s
severity across the call tree. Finally, the right window pane shows the distribution of the
pattern’s severity at the selected call path across the machine topology.

When an application is traced, runtime events critical to communication and computation
activities are intercepted and temporarily stored in main memory. These performance-
relevant events are subsequently written to a trace file according to the Scalasca event model.
Performance-relevant events include entering and leaving functions or other code regions as
well as sending and receiving point-to-point messages or participation in collective commu-
nication. Whereas the communication-related event types are crucial to study the interactions
among different processors and to identify wait states, function entries and exits are needed
to understand the computational requirements and the context in which the most demanding
communication operations occur.
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Table 1.1: Event types of the Scalasca event model as used in this thesis.

Name Description Abbr.
Programming-model independent event types
Enter Region entered E
Exit Region left X

MPI-related event types
Send Message sent S
Receive Message received R
MPI Collective Exit MPI collective code region left MX

OpenMP-related event types
Fork Master thread creates a team of threads F
Join Worker threads finish their execution J
OpenMP Collective Exit OpenMP collective code region left OX
Lock-Acquisition Lock variable acquired L
Lock-Release Lock variable released U

Given that this thesis focuses on a synchronization method to be used within Scalasca, the
Scalasca event model is described in more detail. The Scalasca event model has been designed
to provide a uniform data representation suitable for MPI, OpenMP, and hybrid applications
that use MPI and OpenMP in combination. The model maps events onto their location within
the hierarchical hardware (i.e., machine and node) and to their process and thread of execution.
It supports the storage of all necessary source code and call-site information, recording of
performance metrics, such as hardware counters [18], and marking of collectively executed
operations for both MPI and OpenMP. For the tracing of OpenMP-related events, Scalasca
uses the POMP performance interface [69] and assumes that the same team of threads is
used throughout the entire execution in funneled mode. As tracing of OpenMP ordered, task,
and taskwait sections is not supported within Scalasca, it does also not account for OpenMP
nested and task parallelism. In addition to clusters, target systems can also be metacomputing
environments [12].

The information Scalasca records for an individual event includes at least the timestamp, the
location (i.e., the process or thread) causing the event, and the event type. Depending on
the type, additional information may be supplied. The event model distinguishes between
programming-model independent events and events related to MPI operations and OpenMP
constructs. Table 1.1 lists all programming-model independent as well as MPI- and OpenMP-
related event types of the Scalasca event model [94] along with a brief explanation and their
abbreviation as used in this thesis. In addition, Table 1.2 lists the event attributes for each
event type.

Programming-model independent events indicate that a program enters or leaves a code region.
Such a code region of a parallel program may be a function, a loop, or just a basic block [90].
One execution of a region forms a region instance. As a consistency requirement, regions
must be left in the reverse order they are entered. That is, the region that has been entered last
at a location must be left first on that location. Figure 1.6 illustrates typical event sequences
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Table 1.2: Event attributes of Scalasca’s event types.

Event type Event type attributes
General attributes for all event types

Location
Timestamp

Programming-model independent event types
Enter Region entered

Hardware counter values (optional)
Exit Region exited

Hardware counter values (optional)

MPI-related event types
Send Destination location of message

Communicator
Message tag
Message length in bytes

Recv Source location of message
Communicator
Message tag
Message length in bytes

MPI Collective Exit Collective region left
Root location of the operation
Communicator
Bytes sent
Bytes received
Hardware counter values (optional)

OpenMP-related event types
Join
Fork
Lock-Acquisition Lock variable acquired
Lock-Release Lock variable released
OpenMP Collective Exit Collective region left

Hardware counter values (optional)

according to the Scalasca event model exemplified with the time lines of two locations (i.e.,
processes or threads). For example, Figure 1.6(a) shows the event sequences of user code
region instances consisting of an enter (Ei) and exit (Xi) event record on each location.

Moreover, MPI-related events include events representing point-to-point operations, such as
sending and receiving messages, and events representing the completion of MPI collective
operations. Figure 1.6(b) shows a point-to-point message exchange between two locations.
The respective send (S) and receive (R) event records are enclosed by enter (Ei) and exit (Xi)
event records indicating that a sending or receiving region has been entered or left. Here, the
MPI message semantics in combination with event attributes (e.g., destination location, source
location) enable the determination of the correct logical event sequence. Note that the send
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Figure 1.6: Typical event sequences according to the Scalasca event model.

event always marks the beginning of a send operation, whereas a receive event marks the end
of a receive operation. Assuming globally synchronized clocks, this scheme guarantees that
the timestamp of the receive event is larger than the timestamp of the send event. In addition,
Figure 1.6(c) presents a collective operation instance, on each location marked by enter (Ei)
and collective exit (MXi) event records. These collective exit events are specializations of
normal exit events carrying, among other attributes, information on the communicator. This
information allows identifying concurrent collective exits belonging to the same collective
operation instance.

Finally, OpenMP-related events include events that represent the creation and termination of
a team of threads, leaving parallel regions or barriers executed in parallel, and acquiring and
releasing lock variables. As can be seen in Figure 1.6(d), a fork (F ) event record indicates
that the master thread creates a team of threads, whereas a join (J) event record indicates that
this team of threads is terminated. The location of both events is always the location of the
master thread. In this situation, the enter (Ei) event records indicate that a program enters a
parallel region, whereas the OpenMP-related collective exit (OXi) event records indicate that
the program leaves the parallel region.

Figure 1.7 shows typical event sequences inside OpenMP parallel regions with the time lines
of two locations (i.e., threads). For the sake of simplicity, fork and join event records are left
out. Figure 1.7(a) presents an OpenMP barrier instance, on each location enclosed by an enter
(Ei) and OpenMP collective exit (OXi) event record. In addition, lock event semantics are
illustrated in Figure 1.7(b). The respective lock-acquisition (L) and lock-release (U) event
records are enclosed by enter (Ei) and exit (Xi) event records indicating that a thread entered
or left an omp set lock or omp unset lock region. Whereas the lock-acquisition (L)
event record indicates that a lock variable is acquired by a thread (i.e., shared variable locked),
the lock-release (U) event record indicates that this lock is released (i.e., shared variable
unlocked). In the Scalasca event model, the correct sequence of lock events is only given by the
timestamp of the respective events. Assuming that the thread-local clocks are synchronized,
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Figure 1.7: Typical event sequences inside OpenMP parallel regions according to the
Scalasca event model.

the timestamp could be used to determine the logical sequence of locks during the program
run. However, on some systems this assumption cannot be maintained and so a further global
event attribute, such as a sequence count which is incremented once a lock is acquired, is
necessary to decide which thread acquires a lock after another thread has released it. So far,
the Scalasca event model does not provide such an attribute. Note that the lock-acquisition
(L) event record always marks the end of an set-lock operation, whereas the lock-release (U)
event record marks the beginning of the unset-lock operation. Given that a critical construct
restricts the execution of a structured block to a single thread at a time, the Scalasca event
model uses lock-acquisition and lock-release event records to indicate when the associated
structured block was locked or unlocked. Both events are recorded inside the critical section:
the lock-acquisition event record at the beginning and the lock-release event record at the end.
More specifically, as can be seen in Figure 1.7(c), before the structured block of the critical
region is entered (Ei event records) it is locked (Li event records), and is again unlocked
(Ui) after the structured block is left (Xi event records). Finally, only one thread is allowed
to execute an OpenMP atomic construct at a time (see Figure 1.7(d)). In general, an atomic
region is only described by enter (Ei) event records and exit (Xi) event records. However,
these events are recorded before the region was entered and after the region was left because
tracing inside such a region is not possible. To determine which thread executed the atomic
region before another thread, it would be necessary to record when a thread executes the
atomic region. Unfortunately, the execution of an atomic region is restricted to statements
that can be calculated atomically and so it is not possible to insert event tracing calls. Note
that tracing inside atomic regions would be inefficient, because it would impose a large and
non-negligible overhead.
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Figure 1.8: Time-line visualization of a message exchange in backward direction.

1.5 Timestamp Synchronization

In general, the accuracy of trace analysis depends on the comparability of timestamps taken
on different processors. Inaccurate timestamps may cause a given interval to appear shorter or
longer than it actually was, or change the logical event order, which requires a message to be
received only after it has been sent. This is also referred to as the clock condition. Inaccurate
timestamps may lead to false conclusions during performance analysis, for example, when
the impact of certain behaviors is quantified, or – even more strikingly – may confuse the
user of trace-visualization tools such as Vampir by causing arrows representing messages to
point backward in time-line views (see Figure 1.8). Moreover, tools such as KOJAK may also
cease to work in a satisfactory manner if they rely on message event orders imposed by the
communication substrate to which an operation belongs.

To avoid clock condition violations, the error of timestamps should ideally be smaller than one
half of the message latency μ. For instance, let us assume that a send event appears 1

2
μ too

early while the matching receive event appears 1
2
μ too late in the trace. If we now consider a

message delay of exactly the message latency, the send event appears at the same time as the
matching receive event does, which is impossible and considered a clock condition violation.
While some custom-built clusters such as IBM Blue Gene offer relatively accurate global
clocks, most commodity clusters provide only processor-local clocks that are either entirely
non-synchronized or synchronized only within disjoint partitions (e.g., SMP node). Clock
synchronization protocols such as NTP [68] can align the clocks to a certain degree, but are
often not accurate enough for the purposes of program observation. Assuming that every local
clock on a parallel machine runs at a different but constant speed (i.e., drift), the (global) time
of an arbitrarily chosen master clock can be calculated locally as a linear function of the local
time. For this purpose, offset measurements may be performed between all local clocks and
the master clock once at program initialization and once at program finalization. However, as
the assumption of constant drifts is only an approximation, violations of the clock condition
may still occur – especially when the offset measurements are taken with long intervals in
between. Figure 1.9 shows clock deviations after linear offset interpolation measured using
a simple benchmark program that was executed for 3600 seconds on an Intel Xeon cluster.
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Figure 1.9: Non-linear offsets of physical clocks measured on a Xeon cluster in
comparison to the send-receive latency.

As can be seen, the non-linearity of local clocks caused clock errors much larger than the
send-receive latency.

While the errors of single timestamps are hard to assess, clock condition violations can
be easily detected and offer a toehold to increase the fidelity of inter-process and inter-
thread timings. The controlled logical clock (CLC) [79] is a method to retroactively correct
timestamps violating the clock condition. As the modification of individual event timestamps
might change the length of local intervals and even introduce new violations, the correction
takes the context of the modified event into account by carefully adjusting the local time axis
from the immediate past of the affected event to the end of the local trace. This algorithm
is, however, not suitable for realistic parallel programs because (i) it ignores collective and
shared-memory communication and (ii) as a serial algorithm it offers only limited scalability.
The original CLC algorithm cannot be used to correct clock condition violations among MPI
collective events and OpenMP events. Even more strikingly, the algorithm may introduce
new violations because it ignores happened-before relations among MPI collective events and
OpenMP events while correcting point-to-point event semantics.

Focusing onto cluster systems but not losing sight of the more general metacomputing case,
the contribution of this thesis is fourfold:

1. The thesis investigates the robustness of linear offset interpolation across a range of
timer technologies available on different platforms and shows that the error of times-
tamps derived in this way can easily compromise the consistency of the logical event
order imposed by the event semantics.

2. This thesis extends the algorithm to enable the correction of realistic traces taken
from MPI and hybrid applications. The basic idea behind the extension is to consider
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collective and shared-memory operations as being composed of multiple point-to-point
messages, taking the semantics of the different flavors of operations into account.

3. To accomplish this correction in a scalable way, both distributed memory and parallel
processing capabilities are exploited by processing separate local trace files in parallel
and replaying the original communication on as many CPUs as were used to execute the
target application itself.

4. To employ the replay mechanism in computational grids, this work also defines the
necessary infrastructure to accurately measure clock offsets in distributed environments
based on hierarchical networks.

The remainder of this thesis is structured as follows: Chapter 2 starts with a description of
the most common clock types and their accessibility, followed by the investigation of the
robustness of linear offset interpolation including the influence on timestamps of concurrent
events. While Chapter 3 reviews related work in general, Chapter 4 introduces the original
serial version of the CLC algorithm including its limitations in more detail. In Chapter 5,
the extensions necessary to correctly synchronize collective and shared-memory operations
are introduced. Then, Chapter 6 presents the parallel algorithm design and describes its
implementation within Scalasca. Chapter 7 evaluates the scalability of the parallel version,
and also shows that the collaterally introduced deviations of local interval lengths remain
within acceptable limits. Finally, Chapter 8 summarizes the thesis research and outlines future
work.
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Chapter 2

Processor Clocks

Measuring the time between concurrent events requires a global clock, which is often unavail-
able on clusters. Assuming that the potentially different drifts of local clocks remain constant
over time, linear offset interpolation can be applied postmortem to map local timestamps onto
global timestamps. In this chapter, the robustness of the above assumption is investigated
using different types of timers. It is shown that the error of timestamps derived in this way can
easily lead to a misrepresentation of the logical event order imposed by the semantics of the
underlying communication substrate. This indicates that linear offset interpolation alone may
be insufficient for many applications of event tracing.

2.1 Classification

Processor clocks are used to obtain event timestamps and can be characterized in terms of
their relative offset and drift. The clock offset is the time difference between two clocks at a
given time, whereas the clock drift is the rate at which a clock progresses over time, which
may also be different for two clocks. Figure 2.1 shows two clocks with both an initial offset
and different but constant drifts. Assuming that clocks have different but constant drifts, the
(global) time of an arbitrarily chosen master clock can be calculated locally as a linear function
of the local time. However, the rate at which the offset changes over time (i.e., clock drift) is
usually time dependent. Given that different clock types may exhibit different offset and drift
characteristics, this section reviews the most common clock types and explains how they can
be accessed [9].

2.1.1 Clock Types

Different types of clocks are used to measure and maintain the processor time. Clocks based
on cycle counters use the processor clock signal to increment an internal counter on each
tick. The step size, which depends on the clock rate, may change over time, as state-of-the-art
power management may dynamically slow down or accelerate the signal. As a consequence,
remote cycle counters are very hard to synchronize and therefore only useful to compare events
happening on the same CPU.

In contrast, hardware clocks, often called timestamp counters, use specialized hardware
counters. Based on separate oscillators, their values are incremented on each tick of the
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2. PROCESSOR CLOCKS

Figure 2.1: Two clocks with both an initial offset and different but constant drifts.

oscillator, and thus, their step size does not depend on a potentially unstable processor clock
rate. Although a single hardware clock can provide accurate relative timings, synchronization
among multiple remote hardware clocks is usually not provided.

As another alternative, software clocks are realized in the form of user or library functions.
Often, those clocks are implemented entirely in software without any dedicated hardware
support. Software-based synchronization among different software clocks (e.g., via NTP)
may guarantee synchronized time values to a certain degree [67].

Finally, system clocks are specializations of software clocks and managed by the operating
system (e.g., gettimeofday()). Such system clocks are usually based on cycle counters,
hardware clocks, or software clocks and maintain the system-local time.

As examples of hardware clocks, we consider IBM’s real-time clock (RTC), IBM’s time base
register (TB), and Intel’s timestamp counter register (TSC). All these clocks are 64-bit special-
purpose registers. RTC counts seconds and nanoseconds, while TB and TSC return the number
of ticks counted since processor reset. In contrast, MPI Wtime() must be classified as a
software clock that can be used to transparently query clock values on cluster systems. Open
MPI [74], a widely used open-source MPI library, chooses among a rich set of implementa-
tions for MPI Wtime() at configuration time. The default is gettimeofday(), which
often relies on network-based synchronization via NTP [68]. The general idea behind NTP
is to synchronize distributed clocks before reading them. The distributed clocks query the
global time from reference clocks, which are often organized in a hierarchy of servers. NTP
uses widely accessible and already synchronized primary time servers. In addition, secondary
time servers and clients can query time information via both private networks and the Internet.
To reduce network traffic, the time servers are accessed only in regular intervals to adjust the
local clock. Jumps are avoided by changing the drift while leaving the actual time unmodified.
Unfortunately, varying network latencies limit the accuracy of NTP to about one millisecond
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2.2 Requirements of Event Tracing

compared to a few microseconds required to accurately trace MPI applications running on
clusters equipped with modern interconnect technology [67].

2.1.2 Clock Accessibility

Access to processor clocks is provided either locally or globally. Global accessibility implies
that each processor has access to the same clock over an interconnection network within
either the entire machine or only within a single partition (e.g., SMP-node or multicore-chip).
Because every access either takes exactly the same amount of time regardless of the origin of
the request or the exact amount of time is always known and can be used for local correction,
global accessibility usually guarantees high accuracy. Even though each access introduces a
certain, and usually not negligible overhead, no further synchronization is required, which can
even be counted against the initial overhead. More precisely, a global clock request consumes
more time than a local clock request, but necessitates no postprocessing, thus, reducing the
overall time needed for such a clock access. As a typical representative of a global clock, the
IBM Blue Gene/P system [54] offers a hardware clock that is globally accessible across the
entire machine. In comparison, local accessibility means that each processor has only access
to its own local clock. Of course, querying local clocks incurs less overhead because no data
transfer over interconnection networks is required. On the other hand, the synchronization
of remote clocks may create new overhead. Note that, in general, it cannot be assumed that
processor-local clocks within the same SMP node are perfectly synchronized, as individual
chips may provide their own timestamp counters, such as Intel Xeon multi-core chips [56].

Clock accesses can be further classified as either non-transparent or transparent. Non-
transparent access means a clock is queried directly, with all necessary calculations to yield
the final time value left to the user. These calculations may include the multiplication with a
scaling factor or the mapping onto a predefined start time. During a transparent clock access,
in comparison, the user queries appropriate software functions that already incorporate these
functionalities.

2.2 Requirements of Event Tracing

In this section, we formulate the requirements distributed clocks must satisfy to allow the
generation of event traces that are suitable for analyzing parallel applications. After explaining
the basic scenario of event trace generation, the actual accuracy requirement is presented and
potential implications of inaccuracies on the timestamps of concurrent events are discussed.
A detailed introduction to the technique of event tracing can be found in Chapter 1.

2.2.1 Event Trace Generation

In order to observe the runtime behavior of an application, it is typically necessary to insert
additional code fragments into the application. The process of adding this extra code into
the application is called instrumentation. Usually, the extra code is a function call (i.e.,
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tracing call) to a tracing library to which the application needs to be linked. The tracing
library is responsible for recording necessary data enabling the observation of the application’s
runtime behavior. The locations within the application where the code is added are referred
to as instrumentation points. Most commonly, these points are function entries and exists,
statements, loop entries and exits, or instructions.

A simple way of inserting instrumentation code into an application is specified by the MPI
standard [66]. All MPI library calls also exist with a second entry point name in the
profiling message-passing interface (PMPI), allowing a user or tool developer to provide an
interposed wrapper library intercepting MPI calls issued by the user code. A complementary
approach applicable to user code is to leverage the capabilities provided by many of today’s
compilers to automatically instrument the entry and exit points of functions [41]. Moreover,
instrumentation can take place on the source-code level [42]. Here, a source-code preprocessor
parses source files and adds tracing calls at the entry and exit points of functions. For instance,
the OPARI [69] source-code preprocessing tool specifically focuses on instrumenting OpenMP
directives, but is also well suited to instrument user functions through user-defined directives.
In contrast to source- and compiler-level instrumentation, the binary instrumentation tech-
nique [20, 27] inserts tracing calls after the program’s binary code is generated. In this case,
the additional instrumentation code is injected either at runtime by patching the program’s
binary image in memory, or through rewriting the program executable prior to execution.
Finally, users can also manually instrument their application by directly adding tracing calls
to the program.

Whenever the running application executes a tracing call, an event is generated in the tracing li-
brary, which takes the current time and writes an event record with a corresponding timestamp
to a memory buffer. The buffer contents are flushed to disk when necessary. Events typically
recorded by MPI and/or OpenMP applications include entering and leaving code regions,
sending and receiving point-to-point messages, and events related to collective communication
or synchronization. The clock is read locally to minimize the intrusion overhead associated
with timestamp creation, as querying a remote clock across the network would consume too
much time and introduce inaccuracies caused by varying clock-reading latencies. As a con-
sequence, the timestamps taken on most cluster nodes stem from insufficiently synchronized
local clocks.

2.2.2 Accuracy Requirements

The accuracy of most trace analyses depends on the comparability of timestamps taken on
different processors. Inaccurate timestamps can not only cause a given interval to appear
shorter or longer than it actually was, but also change the logical event order, which requires
that a message can only be received after it has been sent. This is also referred to as the clock
condition [62]. The clock condition, which is given in Equation 2.1, requires that a receive
event occurs at the earliest lmin after the matching send event, with lmin being the minimum
message latency.

trecv ≥ tsend + lmin (2.1)
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2.2 Requirements of Event Tracing

(a) Consistent message-passing event trace: The message is
received after it has been sent.

(b) Inconsistent message-passing event trace: The message
is received before it has been sent.

Figure 2.2: Implications of inaccurate timestamps for message-passing (MPI) event
semantics.

To avoid violations of this condition, the timestamp error should ideally be smaller than one
half of the message latency μ. Once a send event appears 1

2
μ too early, while the matching

receive event appears 1
2
μ too late in the trace and we further assume a message delay of

exactly the message latency, the send event appears at the same time in the event trace as the
matching receive event does, which is impossible and considered a clock condition violation.
A typical clock quartz with a drift of only 1 min/year will already cause a deviation of 2 μs
after 1 s, roughly corresponding to the latency of many modern interconnection networks.
Analogous requirements can be derived for alternative communication mechanisms, such as
collective communication or synchronization, by mapping their semantics onto point-to-point
communication.

2.2.3 Implications of Inaccuracies

The potential implications of inaccurate timestamps for the semantics of message-passing and
shared-memory events are exemplified in Figures 2.2 and 2.3. The correct message-passing
event order shown in Figure 2.2(a) is violated in Figure 2.2(b). The two diagrams show the
time lines of two processes exchanging a message via a send (S) and a receive (R) event. In
the second picture, the measurement suggests that the message has been received before it has
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(a) Consistent shared-memory event trace: The execution of
the barrier by both threads overlaps.
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(b) Inconsistent shared-memory event trace: The execution of
the barrier by both threads does not overlap.

Figure 2.3: Implications of inaccurate timestamps for shared-memory (OpenMP)
event semantics.

been sent, which, of course, is impossible. Obviously, such inconsistencies may also occur
during collective message-passing operations.

In Figure 2.3, the two diagrams present a similar case that may occur in OpenMP programs
when writing traces according to the POMP event model [69]. Shown is the execution of an
OpenMP barrier by two threads involving two different event types: entering (E) and exiting
the barrier (OX). Whereas in Figure 2.3(a) the event order is consistent, in Figure 2.3(b) one
thread leaves the barrier before the other one has entered it, constituting a clear violation of
barrier semantics.

As the screenshot in Figure 2.4 demonstrates, such violations can indeed occur in practice. The
figure shows the time-line visualization of an event trace taken from an OpenMP benchmark
program executed with four threads on an Intel Itanium node with four chips and four cores
per chip. As can be seen in the encircled area, thread 1:2 seems to have left the barrier
(red bars or medium dark) before thread 1:3 had a chance to enter it. Besides violations
of barrier semantics, OpenMP applications may also suffer from misrepresentations of other
happened-before relationships specified in the POMP event model, such as the rule that all
events belonging a parallel region must be temporally enclosed by fork and join events.
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2.3 Linear Offset Interpolation

Figure 2.4: A violation of OpenMP barrier semantics observed on an Itanium SMP
node.

2.3 Linear Offset Interpolation

The most significant deviations between non-synchronized clocks result from differences in
offset and drift. In a simple model assuming different but constant drifts, the local (i.e., worker)
time can be mapped onto the global time of an arbitrarily chosen master postmortem via linear
offset interpolation based on prior offset measurements. Offset values among participating
clocks are measured either at program initialization [34] or at initialization and finalization,
and subsequently used as parameters of the linear correction function [51, 64].

Offsets between master and workers can be determined using Cristian’s probabilistic remote
clock reading technique [25]. Figure 2.5 illustrates this technique with time lines of a master
and worker process exchanging two messages. As can be seen in this figure, the master process
sends a request to a remote worker process at time m1, the worker responds by sending back
its current local time w0, which is received by the master at time m2. Assuming that the two
message delays have equal length, the offset can be calculated according to Equation 2.2.

o = m1 +
m2 − m1

2
− w0 (2.2)

Since, contrary to our assumption, real message communication is prone to irregular delays,
the process must be repeated several times to minimize the measurement error. In order to
prevent the program from being perturbed, offset measurements are usually avoided while
a program is running. Hence, we use offset values among participating clocks which
are measured either at program initialization (i.e., offset alignment) or at initialization and
finalization (i.e., linear offset interpolation). Nonetheless, a recent approach by Doleschal et
al. [29] proposes periodic offset measurements during global synchronization operations while
limiting the effort required in each step by resorting to indirect measurements across several
hops (see Chapter 3).

A single offset measurement to an arbitrary chosen master clock at program initialization
can be used to align different clocks by simply adding the measured offset value to the local
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Figure 2.5: Cristian’s probabilistic remote clock reading technique.

clock value. Assuming two measurements, one at the beginning and one at the end of the
program run, every remote worker eventually has two pairs (w1, o1) and (w2, o2) that contain
its local worker time together with the offset to the matching master time when the two
measurements were taken. The master time m can now be calculated from the worker time w
using Equation 2.3.

m(w) = w +
o2 − o1

w2 − w1
× (t − w1) + o1 (2.3)

2.4 Sources of Inaccuracy

While the above scheme might prove satisfactory for short runs, measurement errors and
time-dependent drifts may create inaccuracies and clock condition violations during longer
runs. Additionally, repeated drift adjustments caused by NTP may impede linear offset
interpolation, as they deliberately introduce non-constant drifts.

Inaccurate timestamps are often the result of either unstable clock drifts or measurement
errors. Varying temperature and flexible power management provided by modern micro-
processors may alter oscillation frequencies, causing clocks to gradually diverge as time
progresses [67]. Temperature variations may cause drift variations of more than 10−8 resulting
in synchronization errors of more than 1 μs after 100 s. Moreover, insufficient timer resolution
may introduce measurement errors, an effect exacerbated by OS jitter. Jitter interference is
primarily caused by scheduling daemon processes or handling asynchronous events such as
interrupts on the side of the operating system.

Although all of the above influences are predictable to some degree, modeling them correctly
will require intimate knowledge of the underlying hardware and software infrastructure, which
is usually not available to developers of generic cluster tools. From that perspective, this
behavior can therefore be classified as non-deterministic.

Finally, network topology and load may adversely affect the predictability of message laten-
cies, an important prerequisite for network-based synchronization. As messages travel through
various stages of the network, the processing time in each stage may vary depending on the
current network load. Since messages exchanged between the same pair of locations may
require different amounts of time, error correction based on assumptions about the message
latency remains challenging.
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2.5 Clock Evaluation

The primary objective of this chapter is to evaluate the effectiveness of linear offset inter-
polation as an instrument for the postmortem synchronizations of timestamps in event traces
of parallel applications. For this purpose, this section now reviews measurements conducted
using different timers on a selection of typical cluster architectures:

Xeon cluster: Located at the Center for Computing and Communication of RWTH Aachen
University, this cluster consists of 60 compute nodes, each with 2 quad-core Intel Xeon
processors running at 3.0 GHz. The compute nodes communicate primarily through an
InfiniBand network.

PowerPC cluster: Located at the Barcelona Supercomputing Center, this cluster (aka
MareNostrum) consists of 2,560 IBM JS21 blade compute nodes, each with 2 dual-
core IBM 64-bit PowerPC 970MP processors running at 2.3 GHz. The compute nodes
communicate primarily through a Myrinet network with Myrinet adapters integrated on
each server blade.

Opteron cluster: Located at the National Center for Computational Sciences at Oak Ridge
National Laboratory, this cluster (aka Jaguarcnl) consists of 3,744 XT3 compute nodes,
each with one dual-core AMD Opteron processor running at 2.6 GHz. Each node is
connected to a distinct Cray SeaStar router through HyperTransport with all the SeaStars
arranged in a 3-D-torus network topology.

In a first step, residual clock deviations were measured after applying

(i) offset alignment only at program initialization so that all clocks started from zero and

(ii) linear offset interpolation based on offset measurements both at program initialization
and finalization, as described in the previous section.

To reflect varying application runtimes, short (300 s), medium (1800 s), and long (3600 s)
measurement runs were performed. All processes were located on different SMP nodes. In
a next step, the actual frequency of clock condition violations was measured in event traces

Table 2.1: Xeon cluster: Process pinning for measurements among SMP nodes,
chips, and cores.

Process pinning

Inter node
4 nodes
1 process per node

Inter chip
1 node
2 chips per node
1 process per chip

Inter core
1 node
1 chip per node
4 processes per chip
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Table 2.2: Xeon cluster: Measured message and collective latencies for different
measurement setups.

mean [μs] std. dev. [μs]
Inter node message latency 4.29 9.80E-04
Inter chip message latency 0.86 4.77E-05
Inter core message latency 0.47 6.94E-06
Inter node collective latency 12.86 1.68E-02

of two MPI applications. The first application was the Parallel Ocean Program (POP), which
is shipped with the SPEC MPI2007 1.0 benchmark suite [85]. The second application was
the MPI version of the ASC SMG2000 benchmark [17], a parallel semi-coarsening multigrid
solver that uses a complex communication pattern and performs a large number of non-nearest-
neighbor point-to-point communication operations. Finally, taking the hierarchical structure of
modern multicore-based cluster architectures into account, we attempted to assess the chance
of clock condition violations occurring in MPI or OpenMP codes when processes are placed
on the same SMP node but on different chips or on the same chip, as shown in Table 2.1 for
the Xeon cluster.

2.5.1 Clock Deviations

As described in Section 2.2, the error of timestamps should ideally be smaller than one half of
the message latency to generate traces suitable for parallel-program analysis. Since messages
latencies between cores on a single chip, between chips on a single SMP node, and between
different SMP nodes usually differ, the message latency was measured for all these cases. For
the first case, the collective all-reduce latency was also measured. As Table 2.2 shows for the
Xeon cluster, the latency exhibits significant variations depending on the relative location of
processes.

To evaluate the effectiveness of timers for linear offset interpolation, clock deviations of
MPI Wtime(), gettimeofday(), and the Intel timestamp counter were measured on
the Xeon cluster during runs of increasing duration after an initial alignment of offsets. The
results are shown in Figure 2.6. Obviously, MPI Wtime() (Figure 2.6(a)) produces severe
clock deviations of more than 200 μs already after a relatively short period. Interestingly,
the deviation seems to grow roughly at a constant rate up to a turning point at which the
slope abruptly changes. After this point, the affected processes continue striding away
linearly but at a much higher rate. gettimeofday() (Figure 2.6(b)) exhibits a very
similar drift pattern, again showing phases of roughly constant drift interrupted by sudden
drift adjustments – albeit a little bit more curvy at least in one instance. The changes are
presumably caused by the underlying NTP synchronization, which periodically corrects the
drift to prevent the clocks from diverging too far. This, of course, is detrimental to linear offset
interpolation, as it deliberately introduces non-constant drifts. In sharp contrast to the previous
two measurements, however, the Intel timestamp counter (Figure 2.6(c)) appears to maintain
an approximately constant clock drift rate even across a very long period of time. Obviously,
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(a) MPI Wtime(): Clock deviations during a short run.

0 200 400 600 800 1000 1200 1400 1600 1800
−4000

−3000

−2000

−1000

0

1000

2000

3000

4000

time [s]

cl
oc

k 
de

vi
at

io
n 

[μ
s]

process 1
process 2
process 3
latency

(b) gettimeofday(): Clock deviations during a medium run.
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(c) Intel timestamp counter: Clock deviations during a long run.

Figure 2.6: Xeon cluster: Measured clock deviations of different timers during short,
medium, and long measurement runs after an initial offset alignment.
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(a) Xeon cluster: Clock deviations using the Intel timestamp counter.
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(b) PowerPC cluster: Clock deviations using the IBM time base register.
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(c) Opteron cluster: Clock deviations using gettimeofday().

Figure 2.7: Measured clock deviations of two different hardware clocks and gettime-
ofday() during long runs after linear offset interpolation.
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Figure 2.8: Measured clock deviations after linear interpolation during a short run on
the Xeon cluster using the Intel timestamp counter. The deviations slightly
exceed the latency.

hardware clocks seem much more appropriate when it comes to taking the timestamps of
concurrent events.

Having reached this conclusion, subsequent experiments therefore focused on the evaluation
of hardware clocks on different cluster platforms. Further tests were conducted on the three
clusters with Intel’s timestamp counter, with IBM’s time base register, and for comparison with
gettimeofday() always using a duration of 3600 s as this mimics a longer application
run. Figure 2.7 shows residual clock deviations after performing linear offset interpolation
(between initialization and finalization) with an expected convergence of offsets at the end
of the run. As can easily be seen, linear interpolation already accounts for the most severe
differences in offset and drift, although significant deviations can still be observed, the highest
occurring when using gettimeofday() on the Opteron system. In fact, measured devia-
tions exceeded the message latency already after a few minutes or even earlier, rendering linear
interpolation alone insufficient to guarantee the absence of clock condition violations during
longer runs. Since shorter runs also use a shorter interpolation interval, linear interpolation
may still be adequate in those cases, although the results of an experiment running for 300 s
on the Xeon cluster suggest that even then violations may occur (Figure 2.8).

2.5.2 Clock Condition Violations

To quantify the extent of clock condition violations in traces of real applications, experiments
were performed with POP and SMG2000 on the Xeon cluster, each time using 32 processes.
To emulate a realistic scenario, we refrained from using a specific process pinning. Instead,
the default setting was kept so the scheduler chose the pinning automatically. Traces were
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Figure 2.9: Xeon cluster: Percentage of messages with the order of send and receive
events being reversed and of message transfer events in relation to the
total number of events for SMG2000 and POP.

obtained using the Scalasca toolset [92], which performs linear offset interpolation based
on offset measurements taken during MPI Init() and MPI Finalize(). The POP
application ran with the mref input data set, causing it to execute 9000 iterations in roughly
25 min. Since tracing the full run would consume a prohibitively large amount of storage
space, only iterations 3500 to 5500 were traced. This “partial” tracing corresponds to the
recommended practice of tracing only pivotal points of long-running applications that warrant
a more detailed analysis. For SMG2000, a problem size of 16 × 16 × 8 per process with five
solver iterations was configured. A longer run of SMG2000 was emulated by inserting sleep
statements immediately before and after the main computational phase so that it was carried
out ten minutes after initialization and ten minutes before finalization. This corresponds to a
scenario similar to POP, in which only distinct intervals of a longer run are traced with tracing
being switched off in between. For this purpose, the artificial chronological distance to the
offset measurements on either end of the run adjusted the interpolation interval to roughly
twenty minutes execution time. However, with many realistic codes running for hours, the
execution times of both POP and SMG2000 in these experiments can still be regarded as an
optimistic assumption.
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Figure 2.10: Intel Itanium SMP node: Percentages of parallel regions in an OpenMP
benchmark program exhibiting clock condition violations across a range
of thread counts.

Figure 2.9 shows the frequency of clock condition violations for both applications on the
Xeon cluster. The numbers represent averages across three measurements for each application
because the number of violations varied between runs. The front row shows the percentage
of messages with the order of send and receive events being reversed, while the back row
shows the fraction of message transfer events in relation to the total number of events in the
trace. The numbers also include logical messages that can be derived by mapping collective
communication onto point-to-point semantics. For POP, around 6% of the messages flew
backward in time, while for SMG2000 the percentage was roughly 5%. The results underline
the hypothesis that linear interpolation alone is insufficient to produce traces free of clock
condition violations and that such violations may adversely affect a significant percentage of
message events.

Finally, relative deviations of clocks co-located on the same SMP node of the Xeon cluster
were examined (i) without any correction, (ii) after aligning only initial offsets, and (iii) after
applying linear offset interpolation. These measurements distinguished between processes
located on different chips and processes located on the same chip. In all cases, the measured
deviations essentially constituted “noise” oscillating around zero with a maximum difference
of roughly 0.1 μs between any two clocks in this ensemble. One further conclusion is that on
this system MPI message semantics can be easily preserved without further postprocessing of
timestamps. A study by Etsion et al. [36] confirmed on similar platforms that the overhead
accessing processor clocks through timestamp counters roughly corresponds to such noise.
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However, as experiments on an Intel Itanium SMP node with four chips and four 4 cores
suggest, on some systems the semantics of OpenMP constructs can be violated: Traces were
taken from a simple OpenMP benchmark program that executes a loop whose body contains
a single parallel-for construct, which is a short cut for an OpenMP for construct enclosed
by a parallel region. The tests were conducted with varying numbers of threads, ranging
from 4 to 16. All events were recorded according to the POMP event model. Neither offset
alignment nor linear offset interpolation was applied to the timestamps, which were taken
using the Intel timestep counter. Figure 2.10 shows the fraction of parallel regions exhibiting
clock condition violations. Again, the numbers represent averages across three measurements
for each configuration. The row in the back gives the percentage of parallel regions with
violations of any kind, while the three rows in the front give the percentages of parallel
regions with specific violations: at the region entry (i.e., fork event not the first event), at
the region exit (i.e., join event not the last event), and during the implicit barrier. Notably,
when using only four threads, more than three quarters of the regions (83%) were affected,
with violations at the region exit occurring most frequently. However, the fraction of affected
regions drops significantly as the number of threads is increased, with 12 threads causing only
very few violations and 16 threads none at all. OpenMP synchronization latencies rising with
an increasing number of threads offer a potential explanation. Interestingly, some of the traces
showed violations at the region entry but not at the exit and vice versa, which may back the
assumption that a more systematic clock deviation can be held responsible. Unfortunately,
the test system did not support the pinning of individual OpenMP threads to specific cores
so that we were unable to distinguish between inter- and intra-chip effects. Whether offset
alignment or interpolation can alleviate the errors remains to be evaluated and also depends
on the question to which extent the mapping of threads onto cores remains stable during the
execution of longer programs.

2.6 Summary

In this chapter, we have evaluated different options for obtaining event timings when tracing
parallel applications on cluster systems. Because the danger of perturbation complicates
offset measurements in the middle of the run, linear offset interpolation between offset
measurements at the beginning and the end of the run has been introduced as an established
instrument used by tracing tools such as Scalasca for an initial correction of timestamps and
as a yardstick to assess the appropriateness of timer technologies.

Since software clocks such as MPI Wtime() or gettimeofday() often leverage net-
work synchronization via NTP, hardware clocks such as IBM’s time base register (TB) or
Intel’s timestamp counter register (TSC) have been identified as alternatives with at least
approximately constant clock drifts. However, as a more detailed analysis revealed, even
these alternatives suffer from drift deviations that may compromise the accuracy of linear
offset interpolation - especially when the application runs longer than a few minutes. As
a consequence, many traces of MPI applications spanning multiple SMP nodes of a cluster
system will exhibit violations of the clock condition, potentially misrepresenting the logical
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event order imposed by message semantics and therefore harming further analyses. Evidence
of frequent violations in real codes has been presented.

Moreover, inaccuracies of timestamps within single SMP nodes in combination with the low
latency of shared-memory synchronization in OpenMP may lead to infringements of semantics
on some systems. As the experiments further indicate, smaller numbers of threads tend to be
more easily affected than larger numbers – potentially due to lower OpenMP synchronization
latencies when using only a few threads.

Summarizing the insights we have gained so far, we can state that linear offset interpolation
is insufficient at least for message-passing and realistic parallel programs spanning more than
one SMP node. As a consequence, the logical event order imposed by the semantics of the
underlying communication substrate may be misrepresented. Lacking more appropriate timer
technologies, we now look for alternatives in Chapter 3, where we review several approaches
aiming at correcting such inconsistencies.
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Chapter 3

Clock Synchronization

This thesis describes an approach for retroactively synchronizing timestamps in event traces of
realistic parallel programs for the purpose of accurate program observation. Before discussing
the underlying method of the proposed synchronization approach in Chapter 4, this chapter
reviews work related to the topic of clock and timestamp synchronization.

3.1 Network-based Synchronization

Network-based synchronization protocols aim at synchronizing distributed clocks before
reading them. Clocks distributed across the network query the global time from reference
clocks, which are often organized in a hierarchy of servers. For instance, NTP [68] uses
widely accessible pre-synchronized primary time servers. Secondary time servers and clients
can query time information via both private networks and the Internet.

To reduce network traffic, the time servers are accessed only at regular intervals. Jumps are
avoided by changing the drift while leaving the actual time unmodified. Unfortunately, varying
network latencies limit the accuracy of NTP to about one millisecond compared to a few
microseconds required to satisfy the clock condition for message-passing applications running
on clusters equipped with modern interconnect technology.

3.2 Offset Interpolation

Time differences among distributed clocks can be characterized in terms of their relative offset
and drift, as discussed in Chapter 2. In a simple model assuming different but constant drifts,
the global time can be established by measuring offsets to a designated master clock using
Cristian’s probabilistic remote clock reading technique [25]. After estimating the drift, the
local time can be mapped onto the global (i.e., master) time via linear offset interpolation.
Given that a detailed description of the linear offset interpolation technique can be found in
Chapter 2, the account of linear offset interpolation is limited to the basics.

Offset values among participating clocks are measured either at program initialization [34]
or at initialization and finalization, and are subsequently used as parameters of the linear
correction function [51, 64]. So as not to perturb the program, offset measurements in between
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Figure 3.1: Communication scheme including edge-coloring for pair-wise offset mea-
surements among even and odd numbers of clocks [29].

are usually avoided. While linear offset interpolation might prove satisfactory for “short” runs
(or interpolation intervals), measurement errors and time-dependent drifts may create inaccu-
racies and clock condition violations during longer runs (see Chapter 2). Additionally, drift
adjustments caused by NTP may impede linear interpolation, as they deliberately introduce
non-constant drifts.

Doleschal et al. [29] propose periodic offset measurements during global synchronization
operations while limiting the effort required in each step by resorting to indirect measurements
across several hops. More precisely, clock offsets are periodically measured at global
synchronization points while the target application is running. To reduce the measurement
overhead, clock offsets are measured pair-wise using a communication scheme given as a
color-edged graph. As illustrated in Figure 3.1 for even and odd numbers of clocks, this graph
is a bipartite, regular graph containing a Hamilton cycle that allows all clock offsets to be
determined – either directly or indirectly. For instance, in Figure 3.1(a) the offset between
clock 1 and 2 can be determined by combining the offset between clock 1 and 8 and the
offset between clock 8 and 2. Note that for odd numbers of clocks, a solution can be derived
from the solution with n + 1 vertices by deleting one vertex and all adjacent edges. The
effort of this communication scheme uses O(n log n) synchronization messages and requires
O(log n) time for n clocks. After program termination, the offsets are used as parameters of a
piece-wise linear interpolation function. Apparently, larger temporal distances between offset
measurements decrease the measurement overhead but also the accuracy of the piece-wise
linear interpolation.

3.3 Error Estimation

If linear interpolation alone turns out to be inadequate to achieve the desired level of accuracy
on a specific cluster system, error estimation allows the retroactive correction of clock
values in event traces after assessing synchronization errors among all distributed clock pairs.
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Figure 3.2: Algorithms that calculate the clock errors through the differences of
message transfer times in both directions between two processes.

Difference functions among clock values are calculated from the difference between clock
values of receive and send events (plus the minimum message latency). Then, a medial
smoothing function can be found and used to correct local clock values because for each
clock pair two difference functions exist.

Regression analysis and convex hull algorithms have been proposed by Duda et al. [33] to
determine the smoothing function. Using a minimal spanning tree algorithm, Jezequel [58]
adopted Duda’s algorithm for arbitrary processor topologies. In addition, Hofmann [50]
improved Duda’s algorithm using a simple minimum/maximum strategy and further proposed
that the execution time should be divided into several intervals to compensate for different
clock drifts in long running applications. Figure 3.2 shows the principles underlying Duda’s
and Hofmann’s algorithms with two processes exchanging messages. Figure 3.2(a) shows
the time lines of two processes i and k along with the process-local clock values Ci and Ck.
The clock errors Ei and Ek of the process-local clocks can be described as the difference
between the local clock values and the physical time t (i.e., wall-clock time), respectively.
As can be seen, messages arrows from process i to k are shown in green, whereas messages
arrows from process k to i are shown in purple. In Figures 3.2(b) and 3.2(c), clock differences
Ck.recv − Ci.send of messages from process i to k are located in the upper part, whereas clock
differences Ck.send − Ci.recv of messages from process k to i are located in the bottom part.
These differences are equal to the clock error differences plus (upper part) or minus (bottom
part) the individual message delays. Any line between the these areas is an approximation
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of the clock error differences. Using such an approximation function to correct clock values
guarantees the logical event order. In Figure 3.2(b), these time differences are enclosed by
their convex hulls (i.e., green and purple encolored areas). In addition, the dotted lines show
those lines with maximum and minimum slope possible between both convex hulls. Duda
et al. calculate the approximation function as the interior bisector of the angle between both
linear functions. As can be seen in Figure 3.2(c), Hofmann reduced the computational effort
by introducing distinct analysis intervals, in which the convex hulls are determined by a simple
minimum/maximum strategy.

Hofmann and Hilgers [52] simplified Jezequel’s algorithm for handling multi-processor
topologies with a shortest path algorithm from graph theory. A modification aimed at handling
cases of non-existing communication relations between some of the application processes is
described in [80]. Biberstein et al. [13] rewrote Hofmann and Hilgers’ algorithm for use on
the Cell BE architecture [21] using a short and intelligible notation. Their version solves
the clock condition problem only for short intervals (i.e., without splitting them into sub-
intervals for handling non-linear drifts of physical clocks). Babaoǧlu and Drummond [4, 32]
have shown that clock synchronization is possible at minimal cost if the application makes
a full message exchange between all processors at sufficiently short intervals. However,
jitter in message latency, nonlinear relations between message latency and message length,
and one-sided communication topologies limit the usefulness of error estimation approaches.
References to additional error estimation approaches can be found in a survey by Yang and
Marsland [96].

3.4 Logical Synchronization

In contrast, logical synchronization uses “happened-before” relations among send and receive
pairs to synchronize distributed clocks. Lamport introduced a discrete logical clock [62]
with each clock being represented as a monotonically increasing software counter. As local
clocks are incremented after every local event and the updated values are exchanged at
synchronization points, happened-before relations can be exploited to further validate and
synchronize distributed clocks. If a receive event appears before its corresponding send event,
that is, if a clock condition violation occurs, the receive event is shifted forward in time
according to the clock value exchanged. Lamport’s discrete logical clock [62] can be used
directly for monitoring [26]. Moreover, an algorithm to prevent the drift between the logical
clocks has been proposed by Raynal [81].

Figure 3.3 illustrates the different steps of Lamport’s logical clock using a simple example
consisting of three processes exchanging messages. The figure shows the time lines of the
three processes along with communication and internal events (opposed to communication-
related events). While events are depicted as small squares, messages are shown as arrows
pointing in the direction of the communication. Given that the process-local clock value is
represented as a software counter, the clock value is shown for each event in the center of
its square. As can be seen, local clock values are incremented after every local event and
the updated values are sent along with the message. Those values are used to calculate the
new clock value at the receiver side. Actually, the clock value of the receive event is given
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Figure 3.3: Lamport’s discrete logical clock: The clock value of the green encircled
event on process B is updated based on the maximum of both the
incremented local clock value on process B and the incremented clock
value of the sending event on process A.

as the maximum of the incremented local clock value and the incremented clock value of the
corresponding send event. For instance, the green encircled event on process B (Figure 3.3) is
the second local event on that process and so its local clock value would be 2. Given that this
event receives a message from process A, its clock value is updated based on both the local
and remote clock value. Here, the incremented local clock value is 2 and the incremented
clock value of the sending event on process A is 3. Given that the maximum of both is 3, the
new value is set to 3. Finally, Lamport’s logical clock preserves the relative order of events,
but does not account for the temporal distance between adjacent events. Therefore, Lamport’s
logical clock cannot be used for certain performance-analysis applications such as measuring
wait states. Moreover, events happening at different wall-clock times may have the same
logical clock value, as can be seen in Figure 3.3 for the second events of processes A and C.

As an enhancement of Lamport’s discrete logical clock, Fidge [37, 38] and Mattern [65]
proposed a vector clock. In their scheme, each processor maintains a vector representing all
processor-local clocks. While the local clock is advanced with each local event as before, the
local vector is updated after receiving a message using an element-wise maximum operation
between the local vector and the remote vector that has been sent along with the message. The
vector clock is used in some monitoring tools [28, 35] and, in a modified form, to distinguish
in event traces between primary wait states and secondary ones that are merely caused by
propagation. Furthermore, global events are introduced in [46], while in [78] spontaneous
events (e.g., collisions on a network) are taken into account. Finally, limits of the logical clock
and the vector clock are illustrated in [83].

As a further enhancement, the controlled logical clock (CLC) algorithm [79, 80] developed by
Rolf Rabenseifner retroactively corrects clock condition violations in event traces of message-
passing applications. The CLC algorithm operates on wall-clock time values and is therefore
able to preserve interval lengths. Those are preserved by shifting events in time as much as
needed. Similar to Lamport’s discrete logical clock, the CLC algorithm restores the clock
condition using happened-before relations derived from point-to-point message semantics.
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If the clock condition is violated for a send-receive event pair, the receive event is moved
forward in time. As the modification of individual timestamps might change the length of
local intervals and even introduce new violations, the correction preserves the context of the
modified event by collaterally moving affected events forward in time, compressing the local
time axis in the future and carefully stretching the local time axis in the immediate past of
the affected event. These adjustments are called “forward” and “backward amortization”,
respectively. Note that the accuracy of the adjustment depends on the accuracy of the original
timestamps, which can be increased through a pre-synchronization step using the linear offset
interpolation technique discussed earlier.

3.5 Summary

In this chapter, approaches to synchronizing timestamps in event traces of parallel programs
were reviewed. Focusing our description of related work on the topic of clock and timestamp
synchronization, we have identified network based synchronization, offset interpolation, error
estimation, and logical synchronization as common mechanisms.

Although all discussed techniques are suitable options to increase the fidelity of event timings,
all are inappropriate for our purposes. Even though NTP can align processor clocks to a certain
degree, the achieved precision of about one millisecond is too low to avoid violations of the
logical event order as imposed by the underlying communication substrate. Furthermore,
offset interpolation - especially the popular linear offset interpolation - and error estimation
cannot handle arbitrary clock drifts and thus fail to guarantee consistent process timings at the
desired level of accuracy. While logical synchronization guarantees the logical correctness of
event timings, this technique modifies the actual time once the logical event order has been
violated and may introduce jumps at synchronization points. In order to retain the length of
intervals between local events, the CLC algorithm accounts for this limitation, making it a
promising target for further studies.

However, the current CLC algorithm is limited by two factors. First, it covers only point-
to-point event semantics, which makes it only partially suitable for realistic message-passing
applications that perform both point-to-point and collective communication. This limitation
also includes the non-observance of shared-memory clock conditions related to OpenMP
constructs. Second, it is a serial algorithm designed for a single global trace file and cannot be
efficiently applied to traces from large numbers of processes. Nevertheless, the CLC algorithm
can form the basis of a more comprehensive and scalable method for retroactively synchro-
nizing timestamps in event traces of parallel programs for the purpose of accurate program
observation. However, before we discuss the extensions of the CLC algorithm necessary
to satisfy the above-mentioned requirements, the details of the original CLC algorithm are
described in Chapter 4.
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Chapter 4

Controlled Logical Clock

Analyzing the performance of parallel programs, for example, by identifying wait states in
event traces, requires measuring temporal displacements between concurrent events. In the
absence of synchronized hardware clocks, linear interpolation techniques can already account
for differences in offset and drift, assuming that the drift of an individual processor is not
time dependent. However, inaccuracies and drifts varying in time may cause violations of the
logical event order. The controlled logical clock (CLC) algorithm accounts for such violations
in point-to-point communication by shifting message events in time as much as needed while
trying to preserve the length of intervals between local events. In this chapter, the CLC
algorithm is described as an extensible option for removing remaining inconsistencies in event
traces postmortem.

4.1 Rationale

Given that this thesis focuses on a synchronization method for the use within Scalasca, the
CLC algorithm is described it in terms of the Scalasca event model, which is similar to
the Vampir event model [71] for which the algorithm was originally designed. As far as
message-passing is concerned, the two models differ only in the way they express collective
communication, which the original algorithm ignores anyway. Since the Scalasca event model
has already been introduced in Chapter 1, this section only briefly recapitulates the basics
needed to understand the algorithm.

The information Scalasca records for an individual event includes at least the timestamp, the
location (e.g., the process) causing the event, and the event type. Depending on the type, ad-
ditional information may be supplied. The event model distinguishes between programming-
model independent events, such as entering and exiting code regions, and events related to
MPI and OpenMP operations. MPI-related events include events representing point-to-point
operations, such as sending and receiving messages, and events representing the completion of
collective MPI operations. Event sequences recorded for typical MPI operations are given in
Table 4.1. OpenMP-related events include events that represent the creation and termination of
a team of threads, leaving a parallel or barrier region, and acquiring or releasing lock variables.
A fork event record indicates that the master thread creates a team of threads (i.e., workers) and
a join event record indicates that the team of threads is terminated. In addition, the OpenMP-
related collective exit record indicates that the program leaves either a parallel or a barrier
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4. CONTROLLED LOGICAL CLOCK

Table 4.1: Event sequences recorded for typical MPI operations.

Function name Event sequence
MPI Send() (enter, send, exit)
MPI Recv() (enter, receive, exit)
MPI Allreduce() (enter, MPI collective exit)

for each participating process

region. Furthermore, an lock-acquisition event record indicates that a lock variable is set,
whereas a lock-release event record indicates that this variable is unset. Event sequences
recorded for typical OpenMP constructs are given in Table 4.2.

As shown in Chapter 2, clock errors may cause both quantitative and qualitative effects.
Quantitative effects may occur as a change of the length of intervals, whereas qualitative
effects may occur as a change of the logical event order, which requires a message to be
received only after it has been sent. In general, if an event e happened before another event e′,
the happened-before relation

e → e′

between both events requires that their respective timestamps C(e) and C(e′) satisfy the clock
condition [62], which is given in Equation 4.1. While the errors of single timestamps are
hard to assess, violations of the clock condition can be easily detected and offer a toehold to
increase the fidelity of inter-process timings.

∀ e, e′ : e → e′ =⇒ C(e) < C(e′). (4.1)

The CLC algorithm [79, 80] is an enhancement of Lamport’s logical clock [62] and requires
timestamps with limited errors, which can be achieved through linear offset interpolation
between program start and end. Specifically, the algorithm retroactively corrects clock
condition violations in event traces of message-passing applications by shifting message
events in time while trying to preserve the length of intervals between local events. In fact, the
algorithm restores the clock condition using happened-before relations derived from point-to-
point message semantics. Since messages need time to travel to their destination, we can
reformulate the above condition, as given in Equation 4.2, with lmin being the minimum
message latency.

∀ e, e′ : e → e′ =⇒ C(e) + lmin ≤ C(e′). (4.2)

Note that the hierarchical structure of many parallel systems allows the definition of multiple
lmin per system, for example, depending on whether messages are exchanged within the same
node or across different nodes. Usually, different latency values can be measured between
(i) processors on the same node, (ii) processors on different nodes, and (iii) processors on
distributed metahosts of a metacomputer.

If the condition is violated for a send-receive event pair, the receive event is corrected (i.e.,
moved forward in time). To preserve the length of intervals between local events, events
following or immediately preceding the corrected event are also adjusted. These adjustments
are called “forward” and “backward amortization”, respectively.
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Table 4.2: Event sequences recorded for typical OpenMP constructs.

Region name Event sequence
omp parallel (fork, enter, OpenMP collective exit, join)

for the participating master thread
omp parallel (enter, OpenMP collective exit)

for each participating worker thread
omp barrier (enter, OpenMP collective exit)

for each participating thread
omp set lock (enter, lock-acquisition, exit)
omp unset lock (enter, lock-release, exit)
omp critical (lock-acquisition, enter, exit, lock-release)
omp atomic (enter, exit)

Figure 4.1 illustrates the different steps of the CLC algorithm using a simple example
consisting of two processes exchanging a single message. The subfigures show the time lines
of the two processes along with their send (S) or receive (R) event, each of them enclosed
by two other events (Ei). Figure 4.1(a) shows the initial event trace based on the measured
timestamps with insufficiently synchronized local clocks. It exhibits a violation of the clock
condition by having the receive event appear earlier than the matching send event. To restore
the clock condition, R is moved forward in time to be lmin ahead of S (Figure 4.1(b)). Because
the distance between R and E4 is now too short, E4 is adjusted during the forward amortization
to preserve the length of the interval between the two events (Figure 4.1(c)). However, the
jump discontinuity introduced by adjusting R affects not only events later than R but also
events earlier than R. This is corrected during the backward amortization, which shifts E2

closer to the new position of R (Figure 4.1(d)). As can be seen in this example, the algorithm
only moves events forward in time.

The logical clock scans the event trace for clock condition violations and applies the forward
amortization to all events following a violated receive event. To prevent an increase of the
overall time represented by the trace that may occur as a result of a domino-style propagation
of forward amortizations, the algorithm applies scaling factors (i.e., control variables) to
ensure that the overall error remains within predefined boundaries. The CLC algorithm always
tries to advance all processor clocks to the fastest clock when correcting the non-linearity
of the clocks. Given that the original timestamps may be logically wrong, this correction
leads to logically correct timestamps with marginal local inaccuracies. As a result, timestamp
differences between events on different processes normally become more accurate than the
original ones because the clocks are advanced to a global clock represented by the fastest clock
among all participating clocks at a time. In comparison, the above-mentioned algorithms of
Duda, Hofmann, and colleagues align the timestamps with the average of the local clocks.
However, for monitoring purpose this difference is not significant because it is in the range of
the drift rates among local clocks (i.e., in the range of about 10−6 − 10−4). Combined with
linear offset interpolation between program start and end, the expected differences are in the
range of 10−8.
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(a) Inconsistent event trace: Clock condition violation in point-to-point communica-
tion pair.
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(b) Locally corrected event trace: The timestamp of the violating receive event is
advanced to restore the clock condition.
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(c) Forward-amortized event trace: Event E4 following the receive event is adjusted
to preserve the length of the interval between the two events.
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(d) Backward-amortized event trace: Event E2 preceding the receive event is
advanced to smooth the jump.

Figure 4.1: Backward and forward amortization in the controlled logical clock algo-
rithm.
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The backward amortization applies a linearly increasing correction to a limited amortization
interval before a formerly violated receive event. However, in order to avoid new violations
of the clock condition, the correction must not advance any send event located in this interval
farther than the matching receive event (minus the minimum message latency). In such a
case, linear correction is applied piecewise, advancing the send events as far as possible and
calculating a different slope for each subinterval before, after, or between those sends [8, 80].
The sections below give a formal explanation of logical clock with forward and backward
amortization.

4.2 Logical Clock with Forward Amortization

In the following, the symbol LC ′ is used to denote timestamps computed by the CLC
algorithm. LC ′ is modeled with t as the wall-clock time and T (t) as the synthetic global
time to which the process clocks Ci(t) (i = 0, . . . , n− 1) will be synchronized. Moreover, let
n be the number of processes, ej

i the jth event on process i, and

E = {ej
i |i = 0, . . . , n − 1 ∧ j = 0, . . . , jmax(i)}

the set of all events in the trace. In addition, the set of matching send and receive pairs is
defined in Equation 4.3. In this version of the algorithm, M only consists of the set of point-
to-point messages.

M = {(el
k, e

n
m)|el

k = send event ∧ en
m = matching receive event}. (4.3)

As discussed in Chapter 1, the send event always marks the beginning of a send operation,
whereas a receive event marks the end of a receive operation. Furthermore, ej

i is called an
internal event if it is neither a send nor a receive event. Furthermore, δi is the minimal
difference between two events on process i and μk,i is the minimum message delay of
messages from process k to process i. Finally, γj

i is a control variable with γj
i ∈ [0, 1]. For

each process i, LC ′
i is now defined as

LC ′
i(e

j
i ) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max(LC ′
k(e

l
k) + μk,i,

LC ′
i(e

j−1
i ) + δi,

LC ′
i(e

j−1
i ) + γj

i (Ci(t(e
j
i ))−Ci(t(e

j−1
i ))),

Ci(t(e
j
i ))) if ∃el

k : (el
k, e

j
i ) ∈ M (4.4)

max(LC ′
i(e

j−1
i ) + δi,

LC ′
i(e

j−1
i ) + γj

i (Ci(t(e
j
i ))−Ci(t(e

j−1
i ))),

Ci(t(e
j
i ))) otherwise. (4.5)

As can be seen, the algorithm consists of two equations. Equation 4.4 adjusts the timestamps
of receive events while Equation 4.5 adjusts timestamps of internal and send events. Note that
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for each process, the terms LC ′
i(e

j−1
i ) + δi and LC ′

i(e
j−1
i ) + γj

i (Ci(t(e
j
i ))−Ci(t(e

j−1
i ))) must

be omitted for the first event (j = 0).

The terms Ci(t(e
j
i )), LC ′

k(e
l
k)+μk,i, and LC ′

i(e
j−1
i )+ δi implement the logical clock, whereas

the term LC ′
i(e

j−1
i ) + γj

i (Ci(t(e
j
i ))−Ci(t(e

j−1
i )) implements the forward amortization. More

precisely, through the term
Ci(t(e

j
i ))

in Equations 4.4 and 4.5, the algorithm ensures that a correction is only applied if the trace
violates the clock condition. The new timestamps satisfy the clock condition because the term

LC ′
k(e

l
k) + μk,i

in Equation 4.4 guarantees that LC ′(ej
i ) is put forward compared to Ci(t(e

j
i )) if required in

the case of a clock condition violation. To make sure that the clock does not stop after a clock
condition violation, the term

LC ′
i(e

j−1
i ) + γj

i (Ci(t(e
j
i ))−Ci(t(e

j−1
i ))

in Equations 4.4 and 4.5 approximates the duration of the original communication after a clock
condition violation and so implements the forward amortization. That is, the clock LC ′

i for
subsequent events of process i runs with the speed of Ci slowed down by the factor γj

i . As
a consequence, the overall time represented by the trace is preserved while only marginally
changing the length of intervals between local events following the clock condition violation.

Moreover, Rabenseifner has shown that γj
i with a constant value can cause LC ′ to be faster

than the fastest clock among all process-local clocks Ci [80]. Cyclic changes of physical clock
drifts may cause an avalanche effect that enlarges the value of clock corrections and propagates
until the end. To avoid this effect, a control loop is used to find the optimal value of γj

i . The
controller tries to limit the differences between LC ′ and T , that is, the controller estimates
the output error indirectly because T (t(ej

i )) is unknown. If 1 − γ is chosen smaller than the
maximal drift differences, the controller will enlarge 1 − γ (e.g., to 1%) to guarantee that any
propagation is bounded by this factor. To calculate γj

i for each event, the controller requires a
global view of the event data. However, if γj

i is kept less than 1 minus the maximum drift of
the processor clocks, a fixed γ = 0.99 or 0.999 is usually good enough to avoid an avalanche
effect because physical clock drifts are normally much less than 10−4. For subsequent events
of the same process, the term

LC ′
i(e

j−1
i ) + δi

in Equations 4.4 and 4.5 causes LC ′ to advance at least a small number of ticks δi if the
physical clocks return the same clock value for different events or the controller has reduced
γj

i to nearly zero. Rabenseifner described the control mechanism in more detail in [80].
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4.3 Backward Amortization

Backward amortization is applied to smooth jump discontinuities caused by the jump Δt of
the logical clock. The value of the jump Δt(ej

i ) at a violated receive event ej
i is shown in

Equation 4.6 with (el
k, e

j
i ) ∈ M .

Δt(ej
i ) = t2(e

j
i ) − t1(e

j
i ) (4.6)

The respective definitions of t1(e
j
i ) and t2(e

j
i ) are shown in Equations 4.7 and 4.8 also with

(el
k, e

j
i ) ∈ M .
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(4.7)
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i ))),

Ci(t(e
j
i )))

(4.8)

The amortization of the jump Δt is achieved by slowly building up the ascension using a
piecewise process-local linear correction in an amortization interval LA of appropriate size
before the violating receive event [80]. The compensation is realized by setting the timestamps
forward. In Figure 4.2, the horizontal axis represents LCb

i , which is equal to LC ′
i (i.e., the state

after forward amortization) but without the jump Δt at the corrected receive event r (shown on
the right). The vertical axis shows offsets to LCb

i after applying different stages of backward
amortization. Naturally, the offset at r corresponds to the jump Δt. Note that the smaller the
gradient of a clock in this figure, the better the correction and the smaller the perturbation of
preceding events. Therefore, the ratio Δt/LA should be only a few percent. Clearly, adjacent
clock condition violations cause a larger perturbation.

In order to avoid new violations of the clock condition, the correction must not advance the
timestamps of send events farther than LC ′

m − μi,m of the corresponding receive event en
m of

a remote process m. These upper limits are shown as circled values above the locations of
the send events. If a linear interpolation (see dash-dotted line in Figure 4.2) does not advance
send events farther than their upper limits (here only at event s1), it can be directly applied.
However, if these limits are smaller than the dashed-dotted line (here at events s2, s3, s4, and
s5), then a reduced piecewise linear interpolation function must be used (see the dotted line).
In our example, the clock error rate is higher than the desired Δt/LA in all intervals. For each
receive event with a jump, the backward amortization algorithm is applied independently. If
there are additional receive events inside the amortization interval during such a calculation
step, then these events can be treated like internal events, because advancing the timestamp of
a receive event further cannot violate the clock condition.
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Figure 4.2: Piecewise process-local linear correction as backward amortization.

To preserve the length of local intervals and so to avoid overcorrection, the piecewise process-
local linear correction must be calculated once the above-mentioned upper limits are smaller
than the linear correction function. The piecewise process-local linear correction function
(see the dotted line in Figure 4.2) is given as the lower border of the green-colored area
which represents a convex area including all upper limits smaller than the linear correction
function. This area is, in fact, described by two independent convex graphs. Whereas the
linear correction function (see dash-dotted line) is the upper boundary of the marked area,
the lower boundary (see dotted line) results in the piecewise process-local linear correction
function.

4.4 Limitations

Although the original CLC algorithm removes remaining inconsistencies in event traces
postmortem, it is limited by two factors. First, it only accounts for point-to-point event
semantics and ignores others such as those imposed by collective message-passing or shared-
memory operations. Second, it is a serial algorithm designed for a single global trace file and
so it cannot be efficiently applied to traces from large numbers of processes.

The former limitation is twofold. Obviously, the current CLC algorithm does not account
for direct violations of collective message-passing and shared-memory event semantics in the
original trace (see Chapter 2). In fact, the algorithm neither restores nor preserves happened-
before relations in collective message-passing and shared-memory operations, because the
constituent events of such constructs are currently treated as internal events. Thus, the
correction may introduce violations of the underlying event semantic even though the event
semantic was not violated in the original trace. For this reason, the current CLC algorithm is
not suitable for many parallel programs that perform not only point-to-point but also collective
communication and shared-memory operations.

The potential implications of isolated corrections based on point-to-point message events
for the semantics of collective message-passing and shared-memory events are exemplified
in Figures 4.3 and 4.4. The two diagrams in Figure 4.3 show the time lines of three
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(a) Inconsistent point-to-point event semantics followed by con-
sistent message-passing barrier semantics: The execution of
the barrier by both processes does overlap.
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(b) Correction of inconsistent point-to-point event semantics
may lead to inconsistent message-passing barrier semantics:
Here, the execution of the barrier by both processes does no
longer overlap.

Figure 4.3: Implications of corrections based on point-to-point event semantics for
collective message-passing (MPI) event semantics.

processes. Two of these processes exchange a message via a send (S) and a receive (R) event.
Subsequently, the second process executes together with the third process an MPI barrier. The
violated point-to-point event order shown in Figure 4.3(a) is corrected in Figure 4.3(b). Here,
the algorithm detects the clock condition violation in the point-to-point message exchange
and immediately corrects this by moving the receive event (R) forward in time. In a next step,
events following the exchange are also moved forward (as part of the forward amortization)
without respecting the collective barrier event semantics. Given that no process is allowed
to exit the barrier before the last process has entered it, the described correction introduces
a clock condition violation. The next two diagrams in Figure 4.4 present a similar case that
may occur in hybrid MPI/OpenMP programs. Shown is a message exchange analogous to
Figure 4.3 followed by the execution of an OpenMP parallel region according to the POMP
event model [69]. Here, the execution of an OpenMP parallel region by two threads is
depicted, enclosed by a fork (F ) and a join (J) event of the master thread. Whereas in
Figure 4.4(a) the point-to-point event order is violated, the parallel regions appear clearly
after the worker has been forked. However, while in Figure 4.4(b) the logical point-to-point
event order is restored, now one thread enters the parallel region before it has been forked,
which is impossible. More precisely, the algorithm detects and corrects the clock condition
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(a) Inconsistent point-to-point event semantics followed by con-
sistent shared-memory fork semantics: All threads enter the
parallel region after they have been forked.
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(b) Correction of inconsistent point-to-point event semantics
trace may lead to inconsistent shared-memory fork semantics:
Here, one thread enters the parallel region before it has been
forked.

Figure 4.4: Implications of restoring point-to-point event semantics for shared-
memory (OpenMP) event semantics.

violation in the point-to-point message exchange, while the subsequent forward amortization
introduces a new violation as a result of the algorithm not accounting for event semantics in
shared-memory operations.

Moreover, the current version is a serial algorithm designed for a single global trace file. In
view of rapidly increasing parallelism, it is crucial that the timestamp synchronization scales to
large numbers of application processes and so a parallel processing scheme would be desirable.

In order to address these limitations, Chapter 5 describes the algorithmic extensions aimed
at restoring and preserving not only point-to-point but also collective message-passing and
shared-memory event semantics. Chapter 6 presents the parallel version and its integration
into the Scalasca trace-analysis framework.
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Chapter 5

Algorithmic Extensions

The original CLC algorithm considers only point-to-point message semantics and, therefore,
it is not suitable for parallel programs that also perform collective communication and shared-
memory operations. However, these additional operations need to be taken into account in
order to enable a more complete correction of timestamps in event traces of realistic parallel
programs. To address the limitations of the original CLC algorithm, this chapter describes
extensions to the original CLC algorithm aiming at restoring and preserving the logical event
order in collective message-passing communication and shared-memory operations. These
extensions allow the correction of realistic parallel programs by mapping collective message-
passing and shared-memory event semantics onto point-to-point event semantics.

5.1 Basic Principle

This thesis focuses on a synchronization method for the use within Scalasca and thus the
necessary extensions of the CLC algorithm are described in terms of the Scalasca event model.
In this event model, a collective operation instance consists of multiple pairs of enter and MPI
collective exit events (i.e., one pair for each participating process). Similar to a collective MPI
operation, an OpenMP barrier is represented by multiple pairs of enter and OpenMP collective
exit events. In addition, a parallel shared-memory region instance also consists of multiple
pairs of enter and OpenMP collective exit events, enclosed by fork and join events only on
the master thread to indicate that the team of threads was logically created or terminated.
Moreover, OpenMP lock operations are also covered by the event model. A lock-acquisition
event indicates that a lock variable – specified by a lock identifier – was acquired, whereas a
lock-release event indicates that this lock was released.

In the following, a happened-before relation between two events is modeled as the exchange
of a logical message between both events. Given that such happened-before relations exist
among the constituent events of collective MPI and OpenMP operations, the basic idea behind
the extension is now to map the above-mentioned events onto point-to-point communication
events [9]. For this purpose, single collective message-passing and shared-memory operations
are considered as being composed of multiple point-to-point operations, taking the semantics
of the different flavors of such operations into account (e.g., 1-to-N, N-to-1, etc.) [8, 11]. Be-
cause the CLC algorithm synchronizes the timestamps of concurrent events using happened-
before relations, the respective “receive” event is put forward in time whenever the matching

51



5. ALGORITHMIC EXTENSIONS

Table 5.1: Classification of MPI collective communication.

Category MPI collective function
N-to-1 MPI Gather, MPI Gatherv

MPI Reduce
1-to-N MPI Bcast

MPI Scatter, MPI Scatterv
N-to-N’ MPI Allgather, MPI Allgatherv

MPI Alltoall, MPI Alltoallv, MPI Alltoallw
MPI Allrecuce, MPI Reduce scatter
MPI Barrier

Special cases MPI Scan
MPI Exscan

“send” event appears too late in the trace to satisfy the clock condition. In reference to the fact
that this method is based on logical clocks, the send and receive event types assigned during
this mapping are called the logical event types as opposed to the actual event types (e.g., enter,
collective exit, etc.) specified in the event trace. The logical event type can usually be derived
from the region name of the respective operation and the role a process or thread plays in the
operation.

Common happened-before relations between events in collective message-passing operations
are exemplified in Figure 5.1 using time-line views of three processes. Note that a happened-
before relation between two events is shown by message arrows between these events. For
the sake of simplicity and to keep the figures well-structured and understandable, happened-
before relations on the same location are not shown. For instance, Figure 5.1(a) shows an MPI
collective N-to-1 operation, where one root process receives data from N other processes.
Given that the root process is not allowed to exit the operation (see collective exit event MX1)
before it has received data from the last process to enter the operation (see enter events Ei),
the clock condition must be observed between the enter events of all sending processes and
the exit event of the receiving root process. In addition, Figures 5.1(b) and 5.1(c) present a
1-to-N and a N-to-N situation, respectively. Whereas in the former figure only the root process
sends messages to all other processes, in the latter figure every process sends a message to
every other process. To fulfill the clock condition, none of the messages is allowed to flow
backward in time.

The CLC algorithm can use these happened-before relations in collective message-passing
communication to synchronize event timestamps. Depending on the flavor of the collective
operation, different enter and exit events are mapped onto logical send and receive events,
respectively. Table 5.1 lists all MPI collective functions along with their category. Note that in
N-to-N’ situations, the number of processes contributing input data may be different from the
number of processes receiving output data. For example, an MPI Allgather operation can
be used to collect data from all members of one group with the result appearing in all members
of a different group. Moreover, the communication patterns of MPI Scan and MPI Exscan
do not fit this taxonomy either. For instance, MPI Scan returns in the receive buffer of
process i the reduction of the values from the send buffers of processes 0, ..., i (inclusive).

52



5.1 Basic Principle

E1

                                                                                      time

p
ro

c
e

s
s

E2

E3

MX2

MX1

MX3

(a) N-to-1: All processes send a logical message to the root process.
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(b) 1-to-N: The root process sends logical messages to all other processes.
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(c) N-to-N: Every process sends a logical message to every other process.

Figure 5.1: MPI collective operation event semantics.
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(a) Team creation and termination: The master thread sends a logical mes-
sage to create a team of threads and receives logical messages once the
team has terminated.
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(b) OpenMP lock sequence: A thread can only acquire a lock once the lock
has been released.

Figure 5.2: OpenMP operation event semantics.

Although the MPI 2.1 standard [66] classifies the MPI Barrier operation as a special case,
because it does not move any data, for the purpose of this thesis, the happened-before relations
found in this function allow us to classify this function as an N-to-N’ situation with N ′ = N .

Recall that, even though clocks on an SMP node are usually well synchronized, the original
CLC algorithm may violate shared-memory event semantics while correcting message-passing
event semantics in a hybrid code. To enable a more complete correction of realistic parallel
programs, the algorithm should preserve shared-memory event semantics and undo potential
violations. As a consequence, happened-before relations need to be identified. Common
happened-before relations in shared-memory event semantics are exemplified in Figure 5.2.
Again, a happened-before relation between two events is shown by (logical) message arrows
between these events, while happened-before relations on the same location remain hidden.
None of the messages is allowed to flow backward in time and thus the CLC algorithm must
use these happened-before relationships not only to restore and but also to retain the clock
condition.
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Table 5.2: Classification of OpenMP regions.

Category OpenMP region
Team creation begin of parallel region
Team termination end of parallel region
Barrier explicite barrier region

implicit barrier (if executed) at the end of
parallel region
loop region (i.e., for, do)
single region
workshare region
sections region

Locking omp set lock
omp unset lock
critical region

Figure 5.2(a) shows the time-line visualization of three threads executing a parallel region.
The master thread creates a team of threads (at fork event F ) which subsequently enters (at
enter events Ei) the parallel region. Such a situation is referred to as team creation. After each
thread left the parallel region (at OpenMP collective exit events OXi), this team of threads
is terminated, as indicated by the join event (J) of the master thread, which is referred to
as team termination. OpenMP barrier constructs are similar to MPI barrier operations and
therefore exhibit the same communication semantics that was discussed earlier. In addition,
Figure 5.2(b) shows the time-line visualization of two threads acquiring and releasing a lock
variable. First, one thread acquires (L1) and releases (U) the lock variable. Second, the other
thread locks (L2) the same variable after the lock was released by the first thread. In such
a situation, which is referred to as locking, two different happened-before relations exist. Of
course, a thread is only allowed to release a lock after it was acquired (L1 → U). Additionally,
the second thread can only acquire the lock once it is released by the first thread (U → L2). As
the event model describes critical constructs with lock events, the described happened-before
relations also exist in critical regions. Given that a critical construct restricts the execution
of a structured block to a single thread at a time, a lock-acquisition event is recorded when
a thread has entered the critical region, whereas a lock-release event is recorded before the
thread leaves the critical region. As discussed earlier, the event sequence of locks is only
given by the timestamp of the respective events. Assuming that the thread-local clocks are
synchronized, the timestamp could be used to determine the correct logical sequence of locks
during the program run. However, on some systems this assumption cannot be maintained
and so the timestamp is insufficient to determine the correct logical sequence of locks. In
general, the algorithm can therefore not detect clock condition violations in lock sequences.
Nonetheless, the algorithm can preserve the event order as found in the original trace. In
addition, similar happened-before relations are also found in atomic and flush constructs,
but the tracing library does not allow us to record events inside those regions. However,
this is crucial to determine when a thread entered or left such a region. For instance, an
atomic construct ensures that a specific storage location is updated atomically. Similar to
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critical constructs, it would be necessary to record events when a thread executes the atomic
construct. However, the execution of an atomic construct is restricted to statements that can
be calculated atomically and so it is not possible to insert event tracing calls. Since we cannot
identify happened-before relations in such regions, these constructs are currently ignored by
the algorithm. Table 5.2 lists all OpenMP regions along with their category where we can
identify happened-before relations.

Given that the original CLC algorithm neither restores nor preserves these happened-before
relations, the algorithm must be extended to cover the above-mentioned event semantics. The
following sections give a formal explanation of the extended version of the logical clock with
forward and backward amortization for both cases: collective message-passing and shared-
memory event semantics.

5.2 Collective Message-Passing Event Semantics

Given that the original CLC algorithm has been designed to correct clock condition violations
only related to point-to-point communication, collective message-passing semantics are com-
pletely ignored. This section explains how the algorithm can be made suitable for realistic
MPI applications that also use collective operations, starting with a discussion of the logical
clock with forward amortization, followed by a discussion of backward amortization.

5.2.1 Logical Clock with Forward Amortization for Collectives

The logical clock scans the event trace for clock condition violations and applies the forward
amortization to all events following a violated receive event. Below, different types of
collective message-passing operations are reviewed to identify happened-before relationships
based on the decomposition of collective operations into send and receive event pairs. Let S
and R denote the set of logical send and receive events in a collective operation instance,
respectively. As defined in Chapter 4, the set of matching send and receive pairs (i.e.,
messages) is called M . For each call to a collective operation, M is now enlarged by adding
S × R with two exceptions, which are discussed later.

1-to-N:

One root process sends its data to N other processes. Examples are MPI Bcast(),
MPI Scatter(), and MPI Scatterv(). S only contains the enter event of the root
process as the logical send event, whereas R contains collective exit events from all processes
in the communicator with a data length greater zero as logical receive events. That is, the set
may be smaller than the size of the communicator in the case of variable length operations
(MPI . . . .v()).
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N-to-1:

One root process receives its data from N processes. Examples are MPI Reduce(),
MPI Gather(), and MPI Gatherv(). R only contains the collective exit event of the
root process as logical receive event. S contains the set of all the enter events, one for each
processes in the communicator, with a data length greater zero as logical send events. Given
that the root process is not allowed to exit the operation until the last process has entered it, the
latest enter event is the relevant send event to fulfill the collective clock condition. Hence, if
S contains more than one element, the term LC ′

k(e
l
k) + μk,i in Equation 4.4 must be replaced

by the maximum of
LC ′

k(e
l
k) + μk,i

over all el
k ∈ S. Given that M is enlarged by S × R, Equation 4.4 must be rewritten as
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N-to-N’:

All processes of the communicator are at the same time sender and receiver. Examples here are
MPI Allreduce(), MPI Allgather(), MPI Alltoall(), and MPI Barrier()
with N’=N, and the variable length operations MPI Alltoallv(), MPI Alltoallw(),
MPI Allgatherv(), and MPI Reduce scatter() with potentially N ′ 
= N . S and R
are defined by all those enter and collective exit events whose processes contribute input data
or receive output data, respectively. To identify happened-before relations in the mentioned
variable length operations, detailed information is needed on which process sent data where
and from where a process received data. However, space requirements only allow us to record
the aggregate amount of data sent and received for these routines. These aggregated data
allow only the identification of logical send and receive events in situations where (i) all
processes must have the same amount of input and/or output data or (ii) only one process either
sends or receives data to or from other processes. As a consequence, the above-mentioned
MPI Alltoallv() and MPI Alltoallw() operations cannot be synchronized with the
event trace data currently available. Finally, for a call to MPI Barrier(), all processes in
the communicator contribute to S and R.
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Special Cases:

For MPI Scan() and MPI Exscan(), the set of messages added to M cannot be expressed
as the Cartesian product S × R. Instead, the set of messages added to M has the form

{(el
k, e

j
i ) | k = 0, . . . , N−1, i = 0, . . . , k−x}

with el
k referring to the enter event and ej

i to the collective exit event of such a collective
operation instance, and with x = 0 for MPI Scan() and x = 1 for MPI Exscan().

Regardless of the collective operation type, it is important to determine S×R in Equation 4.4’
efficiently. As described in Chapter 6, the parallelized version of the CLC algorithm achieves
this by taking advantage of the way collectives are usually implemented, typically reducing
the effort to O(log N).

5.2.2 Backward Amortization for Collectives

The backward amortization applies a linearly increasing correction to a limited amortization
interval before a formerly violated receive event. To preserve the clock condition, the new
timestamp of a send event in the amortization interval still has to be smaller than or equal
to the corresponding receive event timestamp minus the minimal message delay. Hence, the
corresponding receive event timestamp needs to be determined for a send event. If there
are multiple corresponding receive events for a send event, the backward amortization is
not allowed to advance the send event farther than the earliest corresponding receive event.
Depending on the type of operation, the earliest logical receive event must therefore be
determined for each send event in the amortization interval.

More precisely, to extend the backward amortization algorithm for collective routines, the
upper bounds for the send events (see Figure 4.2) must be adapted to collective events: If ej−m

i

is the send event of a collective routine, the upper bound for the piecewise linear interpolation
at ej−m

i is defined as
min
el
k
∈R

LC ′
k(e

l
k) − μi,k

with R being the set of receive events defined in Section 5.2.1.

5.3 Shared-Memory Event Semantics

So far, the original CLC algorithm was extended to support the synchronization of collective
message-passing event timestamps. Nonetheless, the algorithm does not yet account for
violations of shared-memory event semantics in the original trace. Hence, the algorithm
is currently not suitable for shared-memory application and hybrid applications that use
message-passing and shared-memory parallelism in combination. Discussing the logical
clock with forward amortization followed by backward amortization, this section explains
how the algorithm can identify happened-before relations in shared-memory event semantics
in order to synchronize timestamps in event traces of OpenMP and (hybrid) MPI/OpenMP
applications. Again, the necessary enhancements are described in terms of the Scalasca
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event model by mapping shared-memory events onto point-to-point communication events.
Since the mapping depends on the information the event model provides, it is limited by
the event model’s constraints. As tracing of OpenMP ordered, task, and taskwait sections
is not supported within Scalasca, it does also not account for OpenMP nested and task
parallelism as well as dynamically changing thread counts. As discussed earlier, atomic
and flush constructs are currently ignored because the tracing library does not support the
observation of happened-before relations in these constructs. Furthermore, the algorithmic
extensions do not cover shared-memory event semantics imposed by cluster-wide OpenMP
implementations (e.g., Intel Cluster OpenMP [24, 49]), because such implementations may
use additional communication introducing further event semantics which are currently ignored
by the algorithm.

5.3.1 Logical Clock with Forward Amortization

In order to identify happened-before relationships derived from shared-memory event seman-
tics, different types of shared-memory constructs are examined. In the following, a happened-
before relation between two events is modeled with the exchange of a logical message between
these events. Again, S and R denote the set of logical send and receive events in a shared-
memory construct instance, respectively. For each such instance, the set of all send-receive
pairs M is enlarged by adding S × R.

Team creation:

Such a situation occurs when the master creates a team of threads. The master thread sends
a logical message to N worker threads. S only contains the fork event of the master thread
as logical send event, whereas R contains all the enter events of the corresponding parallel
region, one from each thread in the team, as logical receive events.

Team termination:

Such a situation occurs when the master thread terminates the team of threads. The master
thread receives logical messages from N worker threads. R only contains the join event of the
master thread as logical receive event. S is the set of all OpenMP collective exit events of the
corresponding parallel region, one from each thread of the team. Given that the master thread
is not allowed to terminate the team of threads until the last thread has exited the parallel
region, the latest OpenMP collective exit event is the relevant send event to fulfill the shared-
memory clock condition. As already discussed in Section 5.2.1, if S contains more than
one element, the term LC ′

k(e
l
k) + μk,i in Equation 4.4 must be replaced by the maximum of

LC ′
k(e

l
k) + μk,i over all el

k ∈ S and thus Equation 4.4’ must be used accordingly.
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Barrier:

All threads in a team of threads are at the same time sender and receiver. This situation shows
up in explicit and implicit OpenMP barrier construct. S and R are defined by all those enter
and OpenMP collective exit events.

Locking:

For OpenMP lock semantics, the set of messages added to M can also be expressed as the
Cartesian product S × R. At a time, a lock variable can only be acquired by one thread.
Once a look is released, the releasing thread sends a logical “message” to the next thread
acquiring the lock. R contains the lock-acquisition event as logical receive event, whereas S
only contains the lock-release event of the thread releasing the lock as logical send event. At
program start, no lock is assigned to a thread and so the first thread acquiring a lock does not
need to wait for a preceeding unlock event because all locks are unlocked at program start. In
order to satisfy the happened-before relations for these lock-acquisition events, S needs to be
enlarged by an “theoretical” lock-release event (e.g., first event in the trace) matching the first
lock-acquisition event in the trace.

As discussed in Chapter 1, the sequence of these events is only given by the timestamp of the
respective events and so the algorithm cannot detect clock condition violations in the original
trace. More precisely, event attributes are necessary to accurately decide which thread acquires
a lock after another thread has released it and to identify sending and receiving thread pairs.
However, the current event model does not provide such attributes (e.g., sequence count) and
therefore the CLC algorithm can only preserve the event order as found in the original trace.
Hence, the original order of lock events is determined once at program start and subsequently
used when the roles of sender and receiver are determined. As the event model describes
critical constructs with lock events, this technique also accounts for critical regions. Given
that the same unspecified name or a user-defined name is used to identify a critical region, the
event model provides lock identifiers referring to the name of a critical region.

5.3.2 Backward Amortization

To extend the backward amortization algorithm for shared-memory constructs, the upper
bounds for the send events (see Figure 4.2) must be adjusted to shared-memory events: If
ej−m

i is the send event of a shared-memory construct, the upper bound for the piecewise linear
interpolation at ej−m

i is defined as

min
el
k
∈R

LC ′
k(e

l
k) − μi,k

with R being the set of receive events defined in Section 5.3.1.
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5.4 Summary

This chapter described algorithmic extensions to the original CLC algorithm aiming at restor-
ing and preserving the logical event order in collective message-passing communication and
shared-memory operations. Because the algorithm synchronizes the timestamps of concurrent
events based on happened-before relations, they are determined for these operations. A
happened-before relation between two events is modeled as the exchange of a logical message
between the two events. The basic idea behind the extension is to consider collective and
shared-memory operations as being composed of multiple logical point-to-point messages,
taking the semantics of the different flavors of operations into account. In reference to the fact
that this method is based on logical clocks, the send and receive event types assigned during
this mapping are called the logical event types as opposed to the actual event types (e.g., enter,
collective exit, etc.) specified in the event trace.

The extensions cover the different flavors of message-passing communication and shared-
memory operations. The extensions to identify happened-before relations in collective
message-passing event semantics allow the correction of clock condition violations found in
1-to-N, N-to-1, N-to-N’, and MPI Scan/MPI Exscan communication patterns. Moreover,
even though clocks on a SMP node are usually well synchronized, the original CLC algorithm
may violate shared-memory event semantics while restoring message-passing event semantics
in event traces of hybrid codes. The extended algorithm takes happened-before relations
during team creation, team termination, barrier synchronization, and locking sequences into
account, enabling a more complete correction of realistic parallel programs that use MPI and
OpenMP in combination, thereby avoiding the collateral violation of shared-memory event
semantics.
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Chapter 6

Parallel Synchronization

The extended CLC algorithm, as described in Chapter 5, accounts for clock condition vio-
lations not only in point-to-point and collective communication but also in shared-memory
operations. However as a sequential algorithm, the current version of the CLC algorithm is
not able to synchronize timestamps in event traces of realistic parallel applications running
on large processor counts. This chapter presents a parallel implementation of the extended
CLC algorithm and its integration into the Scalasca trace-analysis framework. After reviewing
Scalasca’s parallel trace-analysis mechanism, it describes the parallel implementation for
synchronizing timestamps in event traces of MPI applications. In addition, it introduces the
necessary extensions of the parallel implementation for synchronizing timestamps in event
traces of applications that use MPI and OpenMP in combination. Finally, to employ the
extended and parallelized CLC algorithm in computational grids, this chapter also defines the
infrastructure to accurately measure clock offsets in distributed environments with hierarchical
networks.

6.1 Parallel Trace Analysis

Given that this thesis focuses on a parallel timestamp synchronization method for the use
within Scalasca, this section reviews Scalasca’s parallel trace-analysis methodology. This
methodology is based on the idea of replaying the target application’s communication during
the trace analysis. Therefore, this section presents a detailed description of Scalasca’s replay-
based trace-analysis scheme and describes how it is used to identify performance bottlenecks.
A brief overview of Scalasca can be found in Chapter 1.

6.1.1 Replay-Based Trace Analysis

To accomplish Scalasca’s pattern search in a scalable way, both distributed memory and
parallel processing capabilities available on the target system must be exploited. Instead of
sequentially processing a single global trace file, Scalasca implements a scalable trace-analysis
approach [45] by processing separate local trace files in parallel and replaying the original
communication on as many CPUs as were used to execute the target application itself. The
central idea behind the replay-based analysis is to reenact the target application’s communi-
cation based on the trace information so that each communication operation can be analyzed
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using an operation of similar type. For example, to analyze a message transfer in point-to-
point mode, the required event data are exchanged using a single point-to-point operation.
Since trace processing capabilities (i.e., processors and memory) grow proportionally with the
number of processors, this approach guarantees good scalability at very large scales.

To maintain the efficiency of the trace-analysis process as the number of application processes
increases, Scalasca’s architecture follows a parallel trace-access model which is provided as
a separate abstraction layer between the parallel pattern search and the raw trace data stored
on disk [43]. Implemented as a C++ class library called PEARL, this layer offers random
access to individual events as well as abstractions that help identify matching events, which
is an important prerequisite for the pattern search. The main usage model of the trace-access
library assumes a one-to-one mapping between analysis and target-application processes. That
is, for every process of the target application an analysis process is created that is exclusively
responsible for its trace data. For traces of programs that use the combination of MPI and
OpenMP, the PEARL usage model assumes multiple processes and a fixed number of threads
assigned to each process. Therefore, the pattern analysis becomes a parallel program having as
many processes and threads per process as the target application that generated the trace data.
Note that the current usage model is restricted in that it only supports MPI calls on the master
thread (i.e., MPI funneled mode). Keeping the entire event trace in main memory during
analysis thereby enables performance-transparent random access to individual events. Data
exchange among analysis processes or threads is then accomplished via MPI communication
or shared-memory variables.

Higher-level abstractions offered by PEARL include the context in which an event occurs, such
as the call path or communication peers [91]. While special event attributes store local context
information, remote event abstractions in combination with mechanisms for exchanging event
data among analysis processes allow the tracking of interactions between concurrent events.
The actual matching of communication events is performed by exploiting message event
semantics during the parallel communication replay of the event trace. That is, whenever
an analysis process recognizes events related to communication or synchronization, it engages
in an operation of a similar type with its corresponding communication peer. This is discussed
in more detail in the next section.

6.1.2 Parallel Pattern Search

Scalasca’s trace analyzer uses the infrastructure offered by the trace-access library to traverse
the local event traces in parallel from beginning to end while exchanging information at
synchronization points of the target application. This information is used to locate patterns
of inefficient behavior, to classify detected instances, and to quantify associated waiting times
separately for every call path and process. A pattern is typically composed of multiple
potentially concurrent constituent events with certain constraints regarding their relative order.
The associated waiting time, which is called the severity of the pattern, is usually calculated as
the temporal difference between selected constituents. As an example for the parallel detection
of inefficient point-to-point communication, consider the so-called Late Sender pattern (see
Figure 6.1(a)). Here, a receive operation is entered by one process before the corresponding
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Figure 6.1: Searching for the Late Sender pattern in parallel. The situation described
by this pattern is shown on the left in a time-line diagram. How the
different events are accessed and combined to verify the occurrence of
the pattern is shown on the right.

send operation has been started by the other. The time lost waiting due to this situation is
the time difference between the enter events of the two MPI function instances that precede
the corresponding send and receive events. During the parallel replay (see Figure 6.1(b)),
each analysis process traverses its local event trace data. Once a processes encounters a
communication event, the pattern search is triggered by the communication events on both
sides. Whenever an analysis process finds a send event, a message containing this event as
well as the associated enter event is sent to the process representing the receiver using non-
blocking point-to-point communication. When the receiver reaches the corresponding receive
event, this message is received. Together with the local receive and enter event, a Late Sender
situation can be detected by comparing the timestamps of the two enter events and calculating
the time spent waiting for the sender.

After the trace analysis has been completed, a trace-analysis report is written. The trace-
analysis report includes metrics, such as time, visit counts or message statistics, and also
accounts for the times lost in different wait states. The report is stored as a three-dimensional
array with the dimensions metric, call path, and system resource (e.g., process or thread). The
user can interactively explore the report in the graphical profile browser shown in Figure 6.2.
The tree in the left window pane displays patterns of inefficient performance behavior arranged
in a specialization hierarchy. The numbers left of the pattern names indicate the total execution
time penalty in percent. In addition, the color of the small square provides a visual clue
of the percentage to quickly guide the user to the most severe performance problems. The
middle window pane shows the distribution of the selected pattern’s severity across the call
tree. Finally, the right window pane shows the distribution of the pattern’s severity at the
selected call path across the application topology. Besides the application topology, the
machine topology and the system hierarchy including machines, nodes, processes, and threads
can be displayed.
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Figure 6.2: Trace-analysis report visualization and exploration in Scalasca.

6.2 Integration with Scalasca

Similar to the parallel pattern search performed by Scalasca, the CLC algorithm requires
the comparison of events involved in the same communication operation, which makes it a
suitable candidate for the same parallelization strategy. Instead of sequentially processing a
single global trace file, the timestamp synchronization traverses separate local event traces in
parallel by replaying the original communication on as many CPUs as were used to execute the
target application itself. During the replay, sending and receiving processes exchange relevant
information needed to analyze happened-before relations of the respective communication
operation being replayed. This parallel version of the CLC algorithm is divided into two
replay phases: a forward and backward phase. While the forward phase comprises the logical
clock with the actual forward amortization, the backward phase comprises the backward
amortization, which is only needed if clock condition violations appear during the forward
phase [7, 10].

The CLC algorithm is implemented on top of PEARL and so the implementation is a
parallel program having as many processes as the target application that generated the trace
data, resulting in a one-to-one mapping between target application processes and timestamp
synchronization processes. All synchronization processes read the trace data of “their”
application process into main memory and traverse the traces in parallel while exchanging
information at synchronization points. As already described in Section 6.1, the PEARL usage
model assumes multiple processes and a fixed number of threads assigned to each process for
traces of programs that use MPI and OpenMP in combination. In this case, each timestamp
synchronization thread is responsible for processing the trace data of its application thread.
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Figure 6.3: Parallel trace-analysis process. Gray rectangles denote programs and
white rectangles with the upper right corner turned down denote files.
Stacked symbols denote multiple instances of programs or files running
or being processed in parallel.

As illustrated in Figure 6.3, the parallel CLC algorithm is applied after the traces have been
loaded and before Scalasca’s wait state analysis takes place. To increase the fidelity of the CLC
outcome, the timestamps first undergo a pre-synchronization step. This step performs linear
offset interpolation based on offset measurements taken during initialization and finalization
of the target application (see Chapter 2). Once the offset values are known to each analysis
process, the interpolation operation is performed locally and does not require any further
communication. As an alternative to the native Scalasca wait state analysis, the traces can
also be rewritten with modified timestamps, converted, and visualized using the Vampir time-
line browser. In the following, Sections 6.3 and 6.4 present the parallel implementation
of the extended logical clock with forward and backward amortization focusing on the
synchronization of timestamps in event traces of MPI applications. Moreover, Section 6.5
presents the necessary extensions of the parallel implementation to enable the synchronization
of timestamps in event traces of applications that use MPI and OpenMP in combination.

6.3 Logical Clock with Forward Amortization

The logical clock scans the process-local event trace in parallel for clock condition violations
and immediately corrects these inconsistencies. The necessary remote event data are obtained
by replaying the original communication using PEARL’s parallel replay mechanism, which
has already been described in Section 6.1. As the modification of individual timestamps might
change the length of local intervals, the algorithm takes the context of the modified event into
account by moving events forward but carefully compressing the local time axis starting at the
affected event.

More precisely, each process i traverses its local events ej
i from j = 1, 2, ... and calculates

the new timestamp LC ′
i(e

j
i ) according to Equation 4.4, 4.4’, and 4.5. Due to this iterative

procedure, a process has access to the event ej−1
i , which is already processed, and its new

timestamp LC ′
i(e

j−1
i ) as required by Equation 4.4, 4.4’, and 4.5. In order to access LC ′

k(e
l
k)

on the sender side, as needed by Equation 4.4 and 4.4’, the newly calculated timestamp
LC ′

k(e
l
k) must be transmitted to process i. During the forward phase, the communication
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Table 6.1: Timestamps exchanged among communication peers during forward re-
play for different message-passing communication types.

Type of operation Timestamp exchanged MPI function
P2P send MPI Send()
1-to-N root enter MPI Bcast()
N-to-1 max( all enters ) MPI Reduce()
N-to-N’ max( all enters ) MPI Allreduce()
MPI Scan() max( some enters ) MPI Scan()
MPI Exscan() max( some enters ) MPI Exscan()

replay therefore proceeds in the same direction as the original communication while the target
application was running. For every pair of logical send and receive events, the sending
process sends the timestamp of the send event to the receiving process, which compares it
to the timestamp of the matching receive event (minus the minimum message latency) and, if
necessary, applies the timestamp correction expressed in Equations 4.4 and 4.4’. Recall that,
in addition to actual send and receive events, events pertaining to entering or leaving collective
message-passing operations may be classified as logical send or receive events for the purpose
of the algorithm. In this case, the logical event type (logical send, logical receive, or internal
event) is derived from the region name of the respective operation (e.g., MPI Barrier,
MPI Reduce) and the role (e.g., root or master process) a particular process plays in the
operation [8].

In its treatment of events the algorithm distinguishes between (logical) send or receive events
and internal events that neither send nor receive any kind of message. A different action is
performed for each of the three types. Since the correction of an internal event does not require
any extra communication, the timestamp adjustment is immediately applied. A send event is
adjusted locally and the new timestamp is sent via forward replay to the receiving process.
On the receiver side, the order of these two steps is reversed. The adjusted send timestamp
must be obtained from the sender before the correction can be performed. Finally, the receiver
saves detected clock condition violations temporarily along with the associated timestamp
correction (i.e., the jump Δt according to Equation 4.6) so that this information can be reused
during the backward amortization phase.

While the direction of the inter-process exchange of timestamps is determined by the (logical)
type of an event (i.e., send or receive), the actual communication operation invoked to
accomplish the transfer depends on the operation originally used by the target application.
For this purpose, collective message-passing communication is classified according to the
number of peers involved on either side: 1-to-N, N-to-1, N-to-N’, and two special cases as
described in Chapter 5. The corresponding operation used during the replay depends on
the respective class to which the operation belongs. Table 6.1 lists the MPI operations used
during the replay along with the events which will have their timestamps exchanged. In brief,
point-to-point operations are replayed using point-to-point communication, while collective
operations are replayed using different flavors of collective communication. As discussed in
Chapter 5, N-to-N’ collective operations transferring a different amount of data per process
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such as MPI Alltoallv are currently ignored by the algorithm. To identify happened-
before relations in the mentioned variable length operations, detailed information is needed
on which process sent data where and from where a process received data. However, space
requirements only allow us to record the aggregate amount of data sent and received for these
routines. Although the extended version of the algorithm only needs information about the
respective event semantics (e.g., root sends to all other processes), the accuracy of the model
could be improved if the MPI-internal messaging inside collective operations was exposed
using interfaces such as PERUSE [1]. In this case, the decomposition into (additional) send
and receive events would be naturally given.

For the sake of simplicity, the current implementation uses two different values for the latency:
the inter-node and the intra-node latency. Following a conservative approach aimed at avoiding
overcorrection, an extra collective latency was not considered, as the duration of collective
operations may depend on many factors that are hard to identify, some of them even hidden
inside the underlying MPI implementation. Note that in grid environments, the algorithm
also uses an inter-machine latency to account for wide-area communications. Given that the
parallel calculation of the maximum over all corresponding send events via

max
{el

k
|(el

k
,e

j
i )∈M}

(LC ′
k(e

l
k) + μk,i)

in Equation 4.4’ only requires the timestamps and the machine, node, and process identifiers
to be exchanged to know which of the latency values must be used.

As mentioned earlier, the CLC algorithm uses so-called control variables. The control variable
γj

i ∈ [0, 1] for ej
i (the jth event on process i) is a scaling factor that is applied to interval

expressions when calculating the new timestamp for ej
i . This fulfills the purpose of avoiding

an avalanche-like propagation of corrections [8]. To determine the exact value for γj
i , however,

a global view of the trace data is needed, which is too expensive to establish in Scalasca’s
parallel scheme, as global communication would be required for every single event. Instead,
a suitable global γ is approximated by performing multiple passes of forward replay through
the trace data until the maximum error across all processes is below a predefined threshold.
During the first pass through the trace, the algorithm uses γ = const < 1 − ε; for subsequent
passes a

γp+1 < γp

is used. More precisely, the current implementation uses a fixed γ0 = 1 − 10−5 in the first
pass, while for subsequent passes γp is calculated with γp = 1− 10−5+p. In practice, however,
more than one pass was never needed, as the experiments in Chapter 7 demonstrate.

6.4 Backward Amortization

The purpose of the backward amortization phase is to smooth jump discontinuities introduced
during the forward amortization by slowly building up the ascension to the jump. This is
achieved by applying a process-local linear correction to the interval immediately preceding
the jump. However, in order to preserve the clock condition, the algorithm must not advance
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Table 6.2: Timestamps exchanged among communication peers during backward
replay for different message-passing communication types.

Type of operation Timestamp exchanged MPI function
P2P receive MPI Send()
1-to-N min( all exits ) MPI Reduce()
N-to-1 root exit MPI Bcast()
N-to-N’ min( all exits ) MPI Allreduce()
MPI Scan() min( some exits ) MPI Scan()
MPI Exscan() min( some exits ) MPI Exscan()

the timestamp of any send event located in this interval farther than that of the matching receive
event (minus the minimum message latency), leading to the piecewise linear interpolation
mentioned earlier. That is, remote event data are exchanged during the backward replay
phase and subsequently used to calculate the (piece-wise) linear correction function for each
violating receive event detected during forward amortization.

6.4.1 Backward Replay

The backward replay is needed to determine the matching receive event timestamp for any
send event located in the amortization interval. While replaying the communication backward,
the algorithm stores the timestamp of the matching receive event after forward amortization
with each logical send event. With this information available, an appropriate piecewise linear
interpolation function can be calculated for the amortization interval behind every receive
event shifted during the forward replay due to a clock condition violation.

During the backward amortization the roles of sender and receiver are reversed: the timestamp
of a logical receive event must be made available to the process of the matching send event.
Table 6.2 shows the operations used during the backward replay along with the events which
will have their timestamps exchanged. The backward amortization must be performed as a
backward replay starting at the end of the trace with communication proceeding in backward
direction to avoid the danger of deadlocks. For instance, let us consider the time lines of two
processes exchanging messages as shown in Figure 6.4. In this situation, if the backward
replay started at the begin of the trace with the roles of sender and receiver being reversed, as
mentioned above, a deadlock would occur because each process would wait for a message
from the other process. Obviously, this deadlock can be avoided if the backward replay
proceeds from the end to the begin of the trace.

Given that most MPI implementations use binomial tree algorithms to perform their collec-
tive operations, the forward as well as the backward replay usually have a communication
complexity for replaying collectives of O(log N). Moreover, the stepwise parallel replay
during the backward amortization phase could, in theory, be replaced by a single collective
operation per communicator for the entire trace, but this would impose impractical memory
requirements.
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Figure 6.4: Time lines of two processes exchanging messages.

6.4.2 Piece-Wise Correction

After the backward replay, logical receive event timestamps are locally available on the logical
sender side. Thus, the piece-wise correction function can be calculated. This section describes
the algorithm to determine this correction function starting with an explanation of the symbols
used, and followed by the actual algorithm design. The latter is additionally illustrated in
Figure 6.5.

For the sake of simplicity, timestamps LC ′
i(e

j
i ) after forward amortization are in the following

denoted as t. In addition, δ always denotes timestamp differences. For a send event, δe denotes
the maximum backward amortization allowed, whereas for a receive event, δe denotes the
jump applied during forward correction. More precisely, the maximum backward amortization
allowed for a send event is called δsi and is given as the time difference between the timestamp
of the i-th send event in the amortization interval and the corresponding forward-amortized
receive event minus the minimum latency lmin. Further, the jump at a formerly violated
receive event applied during forward correction is expressed by δr, which does not include
any implicit jumps applied during the forward amortization of earlier events. As can be seen
in Figure 6.5, the symbol r∗ denotes the timestamp of a formerly violated receive event without
forward correction and so its timestamp r after forward correction can be expressed as

r = r∗ + δr.

The amortization interval is given as [tl, tr), to which the correction is applied. Note that
tl denotes the left corner whereas tr denotes the right corner of the amortization interval.
In general, the (piece-wise) linear correction function is characterized by multiple linear
functions gi(t) and a single linear function g(t) is characterized by the slope m and the constant
c as shown below

g(t) = m ∗ t + c.

According to the CLC algorithm, the correction function represents offsets to the timestamps
after forward amortization and so the new value of a timestamp t is expressed as

tnew := t + gi(t).

The algorithm proceeds from the beginning to the end of the local event trace, because in
this way no special treatment is required for receive events occurring inside a backward
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Figure 6.5: Backward amortization: Determination of the piece-wise linear correction.

amortization interval. For every receive event with δr > 0 encountered while traversing the
trace in forward direction, a piece-wise linear amortization is started with the parameters

• tr := r∗ = r − δr,

• δer := δr, and

• m := const.

Here, the left corner of the amortization interval is given as

tl := tr −
δer

m
.

If the value of tl is earlier than the start of the trace tb then the algorithm continues with
tl := tb and m := δer/(tr − tb). Note that an event can be part of several overlapping
backward amortizations and so t can be enlarged several times in the course of the algorithm.

Once a receive event with δr > 0 has been identified (at timestamp r∗ in the figure), the
algorithm searches the amortization interval [tl, tr) for the send event with

max
i

(mi :=
δer − δsi

tr − si

)

and mi > m. If there is no such send event then the linear amortization g0 is applied to
[tl, tr) according to Equation 6.1 and the algorithm continues the forward traversal of the event
stream. However in Figure 6.5, the maximum slope can be found in the interval between the
receive event at timestamp r∗ and the timestamp s4 of the fourth send event in the amortization
interval (see linear function g′

4). As a consequence, a pice-wise linear interpolation function is
needed.

g0(t) := m ∗ t − (m ∗ tl) (6.1)
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In general, if there is such a send event in the amortization interval, the linear amortization g′
i

is applied to [si, tr) according to Equation 6.2.

g′
i(t) := mi ∗ t + (δsi − (mi ∗ si)) (6.2)

Additionally, if δsi is larger than zero the algorithm starts again with the parameters

• tr := si,

• δer := δsi, and

• m = δsi/(si − tl).

In our example, the algorithm starts again with tr = s4, , δer := δs4, and m = δs4/(s4 −
tl). As can be seen in this example, δer is initially set to δr (i.e., the jump applied during
forward correction) and only set to δsi (i.e., maximum backward amortization allowed for a
send event) when needed to calculate a piece-wise linear interpolation function. As shown in
Figure 6.5, the resulting piece-wise linear interpolation function is finally composed by the
linear functions g′

4, g′
2, and g′

1.

6.5 MPI Combined with OpenMP

The original CLC algorithm does not account for direct violations of shared-memory event
semantics in the original trace either. In fact, the algorithm neither restores nor preserves
happened-before relations in shared-memory operations because the constituent events of such
constructs are treated as internal events. As discussed in Chapter 4, while the algorithm
corrects message-passing event semantics, it may introduce violations of the logical event
order in shared-memory operations even though their event order was not violated in the
original trace, as expected on SMP nodes with usually well synchronized local clocks. For
this reason, this section describes the parallel implementation to synchronize happened-before
relations in shared-memory event semantics, as introduced in Chapter 5.

Following the same parallelization strategy, these extensions are implemented on top of
PEARL in combination with the previously described infrastructure for MPI traces. As
discussed in the sections above, for traces of programs that use the combination of MPI and
OpenMP, the PEARL usage model assumes multiple processes and a fixed number of threads
assigned to each process. Implementing a one-to-one mapping of target application processes
and threads to timestamp synchronization processes and threads, the synchronization becomes
a parallel program having as many processes and threads per process as the target application
that generated the trace data. Note that the current usage model is restricted in that it only sup-
ports MPI calls on the master thread (i.e., MPI funneled mode). On a more technical level, all
timestamp synchronization threads read the thread-local trace data of “their” application thread
into main memory and traverse the event traces in parallel while exchanging information at
synchronization points. That is, each thread scans the event trace for clock condition violations
and applies forward and backward amortization, as introduced in the previous sections. Hence,
this section introduces the extensions of the parallel implementation aiming at
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Listing 6.1: Example template function: OMP Allreduce max().

t emplate <c l a s s T>
void OMP Allreduce max (T l v a l , T& g v a l )
{

#pragma omp b a r r i e r
#pragma omp s i n g l e
{

i f ( s t d : : n u m e r i c l i m i t s <T> : : i s i n t e g e r )
g v a l = s t d : : n u m e r i c l i m i t s <T> : : min ( ) ;

e l s e
g v a l = −s t d : : n u m e r i c l i m i t s <T> : :max ( ) ;

}
#pragma omp c r i t i c a l

g v a l = s t d : : max ( l v a l , g v a l ) ;
#pragma omp b a r r i e r

}

(i) identifying the logical event type (logical send, logical receive, or internal event) of an
event related to a shared-memory operation and

(ii) defining operations used during the replay phases to exchange timestamps.

In order to describe happened-before relations among shared-memory events, events pertain-
ing to creating or terminating a team of threads, entering or leaving parallel or barrier regions,
and acquiring or releasing lock variables may be classified as logical send or receive events
for the purpose of the algorithm. Events indicating the creation or termination of a team
of threads and events indicating the acquisition and release of lock variables are directly
identified through their event type as found in the original trace. For events related to entering
or leaving parallel or barrier regions, the logical event type is derived from the region name
(i.e., omp parallel, omp barrier) and the role (i.e., master thread) a particular thread
plays in the operation.

Furthermore, functions are defined to exchange timestamps during the replay phases. The
respective function invoked to accomplish the data transfer during the forward and backward
replay depends on the operation originally used by the target application. For this purpose,
shared-memory constructs are classified according to Chapter 5: team creation, team termina-
tion, barrier, and locks. The corresponding function used during the replay depends on the re-
spective class to which the construct belongs. Note that an MPI library has software functions
that already provide the necessary communication pattern (e.g., 1 − to − N by MPI Bast),
whereas OpenMP does not provide such functions. As a consequence, function templates are
needed to emulate the above-mentioned communication classes in OpenMP. For instance, List-
ing 6.1 presents a template function which updates a shared global variable with the maximum
value of thread-local variables using OpenMP constructs (OMP Allreduce max()). Given
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Table 6.3: Timestamps exchanged among communication peers during the two re-
play phases for different shared-memory communication types.

Type of operation Timestamp exchanged Function
Forward replay
Team creation fork OMP Bcast()
Team termination max( all OpenMP exits ) OMP Reduce max()
Barrier max( all OpenMP enters ) OMP Allreduce max()
Locks lock-release OMP RLock()

Backward replay
Team creation min ( all enters ) OMP Reduce min()
Team termination join OMP Bcast()
Barrier min( all OpenMP exits ) OMP Allreduce min()
Locks lock-acquisition OMP RLock rev()

that all threads need to execute this procedure simultaneously to circumvent race conditions,
two OpenMP barriers enclose the main body consisting of a single and critical section. The
former sets the default value of the global variable, whereas the latter implements the update
mechanism of the routine. The current implementation uses such function templates with
functionality similar to their MPI counterparts. Table 6.3 lists the functions used during
the replay along with the events which will have their timestamps exchanged. Besides the
already discussed OMP Allreduce max() operation, OMP Allreduce min() is used
to determine the minimum value of thread-local variables. In addition, OMP Reduce max()
and OMP Reduce min() update a master-local variable with the maximum or minimum
value of a thread-local variable, respectively. Next, OMP Bcast() updates a shared variable
with the value of a master-local variable.

The timestamp synchronization also encompasses the preservation of the logical event order
in lock-acquisition/lock-release lock sequences. Single locks are identified by their lock
identifier. In addition, the tracing library maps critical sections onto lock events. Note that the
name of a critical section corresponds to a lock identifier. However, the tracing library does not
provide event attributes to determine which lock occurred before another lock (see Chapter 1).
As a consequence, the chronological sequence of locks in the original trace is all we “know”
about the event order which should be preserved during the timestamp synchronization. For
this purpose, the chronological event order of lock events along with their lock identifier is
determined and stored in a global data structure before the algorithm is applied. Subsequently
during the forward replay, the locking and unlocking is replayed using the two function
templates OMP ALock() and OMP RLock(), respectively. OMP ALock() waits unless all
preceeding locks are processed by the algorithm. Once all preceeding locks are processed, the
timestamp of the matching lock-release event required to fulfill the happened-before relation
can be read. Note that this timestamp was already updated in the OMP RLock() function.
Two special versions OMP ALock rev() and OMP RLock rev() are used during the
backward replay, because in this case the role of logical send and receive events needs to
be determined in backward order.
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6.6 Wide-Area Communication

The solution of critical numerical problems may require more processing power and memory
capacity than is available on a single parallel machine. Often, coupling multiple independent
parallel machines (i.e., metahosts) to form a more powerful metacomputer [84] is the only vi-
able method to increase the resources available for a single application. Although applications
can benefit from the increased parallelism offered by a metacomputer, as supported by a recent
study by Wong and Goscinski [95], achieving satisfactory application performance is difficult.
Algorithm design must account for the hierarchies of latencies and bandwidths in addition to
the heterogeneous hardware architectures found in such environments. Hence, performance
optimization is a crucial but non-trivial task that needs adequate tool support. Automatic
pattern search in event traces is a suitable method to identify wait states that appear as a result
of using a metacomputer consisting of multiple geographically dispersed metahosts [12]. For
this reason, the next section describes the necessary extensions of the Scalasca trace-analysis
framework to support the automatic performance analysis of metacomputing applications.

6.6.1 Metacomputing Scenario

The trace analysis performed by Scalasca identifies wait states that occur when processes
reach synchronization points at different moments. When developing efficient applications for
metacomputers, a major difficulty arises from load balancing on the heterogeneous hardware
found in these environments. Since load imbalance often manifests itself as processes
arriving in an untimely manner at synchronization points, the general concept behind the
pattern analysis is well suited to guide application developers in recognizing problems of this
kind. For this reason, Scalasca’s trace analysis was extended to metacomputing environments
consisting of multiple independent parallel computers or clusters. Major challenges addressed
include

(i) establishing a global view of trace data in the absence of a global file system and

(ii) synchronizing timestamps across a hierarchy of network links with different latencies.

The extensions also encompass the definition of new wait-state patterns so that waiting times
resulting from inter-metahost communication can be distinguished from purely local ones.
To distinguish pattern instances that result from processes on different metahosts waiting for
each other, special “grid” versions of its existing patterns were added to Scalasca. In the case
of point-to-point communication, the analysis recognizes whether sender and receiver reside
on different metahosts. In the case of collective communication, the entire communicator is
searched for processes differing in their machine (i.e., metahost) location component. The grid
versions of these patterns simply check whether communication across different metahosts
has taken place. Figure 6.6 shows an example of a trace-analysis report with three different
metahosts. The graphical browser organizes the grid patterns in a hierarchy, which allows a
convenient in-depth study of the performance behavior at varying levels of granularity.

Using the grid-enabled version of Scalasca in combination with statistical analyses and time-
line visualization provided by Vampir, the performance of the multi-physics code Meta-
Trace [39] was optimized on the heterogeneous and geographically dispersed metacomputing
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Figure 6.6: Analysis result presentation of an application running on three metahosts:
Grid-specific patterns are distributed across three metahosts.

testbed Viola [16] by more than a factor of two, eliminating a large fraction of the inter-
metahost waiting times previously observed [6].

The extended and parallelized CLC algorithm is well suited for computational grids because
it accounts for the hierarchy of latencies as found in these systems through an additional inter-
machine latency. Moreover, its distributed memory and processing scheme can establish the
global view of trace data in the absence of a global file system. However, the algorithm
requires timestamps with limited errors, which can be achieved through linear offset interpo-
lation between program start and end. The linear offset interpolation mechanism, as discussed
in Chapter 2, needs to be revised because its design ignores the above-mentioned hierarchy of
latencies. Thus, to employ the replay mechanism in metacomputing environments, the next
section defines the necessary infrastructure to accurately measure clock offsets in distributed
environments based on hierarchical networks.

6.6.2 Hierarchical Offset Measurement

The current linear offset interpolation approach is inaccurate because of the network links
between different metahosts, whose latencies may be an order of magnitude larger than those
of the internal networks. As a consequence, offset measurements across these links are less
accurate in absolute terms than those across the internal networks. When processes living on
different nodes of the same metahost measure their offset relative to a master process living on
another metahost, they might be well-synchronized relative to the master because the accuracy
of the offset is sufficient in relation to the message latency of the external network. However,
the offset relative to each other, which is calculated by subtracting their offsets relative to the
master, might be unacceptable high in relation to the latency of the internal network between
them [12].

The current linear offset measurement follows a centralized approach that is based on the
transitivity of offset relations (see Chapter 2). As illustrated in Figure 6.7, all worker processes
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Figure 6.7: Flat offset measurements between each worker process and a single
master process.

measure their offset relative to the master and it is assumed that the offsets relative to each
other can be derived from their offset to the master. The error of the offset measurement
between two processes at a given moment (derived or measured) should be smaller than half
of the message latency between them to ensure the clock condition. As explained above, this
requirement may be violated if the offset between processes connected by a low-latency link is
derived from offsets between processes connected by a high-latency link because it is assumed
that the absolute error of offset measurements grows with the latency.

The current offset measurement approach is flat in that all workers measure their offset by
contacting the master directly without taking the hierarchy of network latencies between
them into account. In contrast, Figure 6.8 presents the new scheme following a hierarchical
approach: Using a unique metahost identifier, each metahost determines a local master
process. After that, one metamaster is chosen from among all the local masters. Now all local
masters measure their offset relative to the metamaster. After this has been done, all worker
processes exchange ping-pongs with their local master to determine the offset relative to the
local master. If a metahost already provides a global clock, this second step is omitted. Finally,
the offset to the metamaster is calculated by adding the two measured offset values. Since
all workers within the same metahost now use the same inter-metahost offset measurement,
their relative offset remains unaffected. An experimental validation of the new approach is
presented in Chapter 7.

78



6.7 Summary

...

Process

Process

...

...

...

Process

Process

...

...

Metahost 0 Metahost n-1

...

Process

Process

...

...

Metahost i

Figure 6.8: Hierarchical offset measurements between each local worker process
and their local master.

6.7 Summary

As a serial algorithm, the original CLC method offers only limited scalability. However, it is
crucial that the timestamp synchronization scales to large numbers of application processes.
Hence, this chapter presented a parallel CLC algorithm design for the retroactive correction of
timestamps based on logical clocks.

To accomplish the synchronization in a scalable way, both distributed memory and parallel
processing capabilities are exploited by processing separate local trace files in parallel and
replaying the original communication on as many CPUs as were used to execute the target
application itself. During the replay, sending and receiving threads exchange relevant infor-
mation needed to synchronize event timestamps according to the CLC algorithm. This parallel
version of the CLC algorithm is divided into two replay phases: a forward phase for the logical
clock with forward amortization and a backward phase for the backward amortization. Only
if clock condition violations appear during the forward phase, the backward phase is needed
to smooth the introduced jump discontinuities at formerly violated receive events.

The algorithm has been incorporated into the Scalasca framework to facilitate trace analyses
of longer runs on larger cluster systems and in metacomputing environments. The replay-
based CLC algorithm allows the correction of large-scale applications and should guarantee
good scaling behavior, which is investigated in Chapter 7. As introduced in Chapter 5, the
algorithm uses happened-before relations in message-passing and shared-memory operations
to enable the correction of parallel programs with collective and shared-memory operations.

Due to its distributed memory and processing scheme, the parallel CLC algorithm is well
suited for metacomputing environments and also accounts for the hierarchy of latencies as
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found in these systems. As the algorithm, however, requires timestamps with limited errors,
which can be achieved through linear offset interpolation between program start and end,
the linear offset interpolation mechanism is revised because its design ignores the above-
mentioned hierarchy of latencies. The proposed hierarchical mechanism for measuring clock
offsets is able to deal with substantially different latencies in external and internal networks
during offset measurements across geographically dispersed metahosts.

In the next chapter, we evaluate the parallel CLC algorithm in terms of its suitability for
realistic parallel programs running on cluster systems or metacomputing environments. Before
investigation the scaling behavior, we review the accuracy of the extended and parallelized
CLC algorithm. In particular, we investigate whether the collaterally introduced deviations
of local intervals remain within acceptable limits. Finally, an experimental validation of the
hierarchical offset measurement scheme is presented.
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Chapter 7

Experimental Evaluation

To circumvent the obstacles for trace analysis arising from the absence of synchronized
hardware clocks and their non-constant clock drifts, this thesis describes an approach to
retroactively synchronizing event traces of realistic parallel programs. Extensions of the
controlled logical clock to handle collective and shared-memory operations have been already
proposed in Chapter 5, followed by the parallel algorithm design and its implementation within
the Scalasca trace-analysis framework in Chapter 6. Nonetheless, an experimental evaluation
is crucial to validate accuracy and scalability of the proposed mechanisms for retroactively
synchronizing timestamps of concurrent events. First, this chapter experimentally investigates
the hierarchical offset measurement scheme in metacomputing environments. Second, it gives
evidence of the frequency and the extent of clock condition violations in event traces of parallel
programs after applying linear offset interpolation. Third, it presents an evaluation of the
accuracy and scalability of the parallel controlled logical clock algorithm when applied to
traces of parallel programs running on either cluster systems or metacomputers.

7.1 Experimental Setup

This section summarizes the computing systems used to evaluate the mechanisms proposed in
Chapters 5 and 6. It starts with the cluster systems followed by the metacomputers and their
setup used in this evaluation study.

7.1.1 Cluster Systems

In order to evaluate the scalability and accuracy of the parallel controlled logical clock
algorithm and also to give evidence of the frequency and the extent of clock condition
violations in event traces, experiments were taken on the following cluster systems:

Cacau consists of 200 compute nodes, each with 1 dual-core Intel Xeon EM64T CPU
running at 3.2 GHz. Located at the High Performance Computing Center Stuttgart,
each node of Cacau is linked with a Voltaire Infiniband network and a Gigabit Ethernet.
The measured MPI inter-node latency was 4.7 μs, the measured MPI intra-node latency
was 1.0 μs.
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Jaguar is a Cray XT4/5 system located at the National Center for Computational Sciences
at Oak Ridge National Laboratory. The XT4 partition used for our experiments has a
total number of 7,832 quad-core 2.1 GHz AMD Opteron nodes. Each node is connected
to a distinct Cray SeaStar router through HyperTransport with all the SeaStars arranged
in a 3-D-torus network topology. The measured MPI inter-node latency was 8.6 μs, the
measured MPI intra-node latency was 0.6 μs.

MareNostrum consists of 2,560 JS21 blade compute nodes, each with 2 dual-core IBM
64-bit PowerPC 970MP processors running at 2.3 GHz. Located at the Barcelona
Supercomputing Center, the compute nodes of MareNostrum communicate primarily
through a Myrinet network with Myrinet adapters integrated on each server blade. The
measured MPI inter-node latency was 7.7 μs, the measured MPI intra-node latency was
1.3 μs.

Nicole consists of 32 compute nodes (stage 3), each with two quad-core AMD Opteron
processor running at 2.4 GHz. Located at the Jülich Supercomputing Centre at
Forschungszentrum Jülich, each node is linked with an Infiniband network. The
measured MPI inter-node latency was 4.5 μs, the measured MPI intra-node latency was
1.5 μs.

7.1.2 The Viola Metacomputer

The evaluation of the hierarchical offset measurement scheme was carried out on the Viola
grid. Viola [16] is a project funded by the German Ministry for Education and Research, which
provides a testbed for advanced optical network technology. A major focus is the enhancement
and test of new advanced grid applications. Applications on the Viola grid cover various
research disciplines including environmental research, the design of complex technological
systems like biosensors and crystal growth for microchip wafer production, and structural
mechanics in engineering. This section describes the network topology, hardware architecture,
and middleware of the Viola grid used in the course of this evaluation study.

Network Topology and Hardware Architecture: The network behind the Viola grid
consists of a 10 Gbps backbone network with connections to workstations and compute
clusters located at various sites in Germany including Sankt Augustin, Jülich, Bonn, Nürnberg,
and Erlangen. The nodes of the connected compute clusters are linked to the backbone with 1
Gbps adapters. The network topology of the testbed section used in this study is illustrated in
Figure 7.1.

As can be seen in Figure 7.1, the section comprises three sites, the Center of Advanced
European Studies and Research (CAESAR) in Bonn, FH Bonn-Rhein-Sieg Sankt Augustin
(FH-BRS), and Forschungszentrum Jülich (FZJ), which are connected via high-speed optical
links offering a bandwidth of 10 Gbps between each pair of sites. The three sites lie between
20 and 100 km apart and provide the following cluster systems:

• A PC Linux cluster with 32 2-way Intel Xeon SMP nodes at 2.6 GHz with a Gigabit
Ethernet interconnect located at CAESAR.
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Figure 7.1: Network topology of the Viola grid section used for the experiments.

• A PC Linux cluster with 6 4-way AMD Opteron PC nodes at 2.0 GHz with a usock over
Myrinet interconnect located at FH-BRS.

• A Cray XD1 Linux cluster with 60 2-way AMD Opteron SMP nodes at 2.2 GHz with a
usock over RapidArray interconnect located at FZJ.

These components form a very heterogeneous metacomputer layout with a hierarchy of
different network latencies and varying characteristics of the compute clusters, which differ
also with respect to their operating systems (different versions of Linux) and compilers.

Middleware: Running a parallel application on such a metacomputer needs also mid-
dleware components for application startup and a wide-area communication library for the
transfer of data between application processes residing on geographically dispersed metahosts.
The middleware interacts with local resource managers to co-schedule jobs on different
clusters. The communication library should support transparent high-bandwidth and low-
latency message transfers between all nodes of the attached clusters.

The co-scheduling of jobs on different clusters in the Viola grid is managed by the grid
middleware UNICORE [47] which has been enhanced by adding a meta-scheduler for the
simultaneous allocation of compute and network resources. Bierbaum et al. [14] described
this UNICORE-based infrastructure supporting the co-allocation of metacomputing resources
in more detail, with special emphasis on the intricate task of coordinating network allocation
with application startup.

Viola uses MetaMPICH [15], the grid-enabled MPICH-based MPI implementation developed
at RWTH Aachen University, to establish direct connections to the external network from each
node. MetaMPICH supports these direct connections through a multi-device architecture that
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Figure 7.2: Network topology of the Janet backbone [57].

allows external communication within the Viola grid with the maximum bandwidth of 1 Gbps
per node across the wide-area network without the involvement of dedicated router processes.
The high bandwidth of the backbone can only be used if the data transmission between the
clusters is done in parallel.

7.1.3 National Grid Service

In order to evaluate the controlled logical clock algorithm on a metacomputer, measurements
were taken on the UK National Grid Service (NGS) grid [72], because at that time the Viola
grid was already decommissioned. The NGS is the core UK academic research grid and is
intended for the production use of computational and data grid resources. It provides coherent
electronic access for UK researchers to all computational- and data-based resources and
facilities required to carry out their research, independent of resource or researcher location.
This section describes the network topology, hardware architecture, and middleware of the
NGS grid.

Network Topology and Hardware Architecture: The network behind the NGS grid
uses the Janet backbone, which links various academic research sites in the UK – including
the sites at NGS – through a high-bandwidth and low latency wide-area network. The network
topology of the Janet backbone is illustrated in Figure 7.2. NGS resources are linked to this
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backbone and comprise the four founding members the Science and Technology Facilities
Council’s e-Science Centre, the University of Oxford, the White Rose Grid (University of
Leeds), and the University of Manchester, plus various partner and affiliate sites.

The metacomputer constituents at University of Leeds and University of Manchester are
located roughly 65 km apart from each other with a measured MPI inter-machine latency
of 1.3 ms:

• Located at the University of Leeds is a PC Linux cluster with 48 nodes, each with 2 dual-
core AMD Opteron processors running at 2.6 GHz. The compute nodes communicate
primarily through a Myrinet network with Myrinet adapters integrated on each node.
The measured MPI inter-node latency was 4.4 μs, the measured MPI intra-node latency
was 1.5 μs.

• Located at the University of Manchester is a PC Linux cluster with 48 nodes, each
with 2 dual-core AMD Opteron processors running at 2.6 GHz. The compute nodes
communicate primarily through a Myrinet network with Myrinet adapters integrated on
each node. The measured MPI inter-node latency was 4.4 μs, the measured MPI intra-
node latency was 1.5 μs.

The nodes of the connected compute clusters are linked to the backbone with 1 Gbps adapters.
Again, the high bandwidth of the backbone can only be used if the data transmission between
the clusters is done in parallel. Given that the network is not only assigned to the NGS grid
but also to other UK academic research facilities, parallel applications on the NGS grid share
the available network resources with other applications. Nonetheless, compute clusters can
internally use their own Myrinet network.

Middleware: The co-scheduling of jobs on different clusters in the NGS grid is managed
by the Globus grid middleware and the Highly-Available Resource Co-allocator (HARC) [40,
63]. While Globus provides software services and libraries for resource monitoring and
management, HARC creates and manages reservations of single resources and groups of
resources. In a typical scenario, Globus is responsible for transparent application startup
on each site, whereas HARC creates reservations for cross-site jobs and implements the co-
allocation across the wide-area network.

Moreover, NGS uses MPIg, an MPICH-based grid-enabled MPI implementation, to establish
direct connections to the external network from each node [59]. MPIg allows users to couple
multiple machines of potentially different architectures to run message-passing applications.
In order to take advantage of usually fast intra-machine networks, MPIg is built on top of
devices supporting different flavors of communication substrates. Similar to MetaMPICH,
these substrates include vendor-specific interconnects for fast intra-machine communication
as well as distinct TCP/IP interconnects for inter-machine communication across a wide-area
network.
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Table 7.1: Latencies of the internal and external networks in Viola.

mean [μs] std. deviation [μs]
FZJ - FH-BRS

9.88E+02 3.86E+00
(external network)

FZJ
2.15E+01 8.14E-01

(internal network)
FH-BRS

4.44E+01 3.60E-01
(internal network)

7.2 Hierarchical Offset Measurement

To accurately measure clock offsets in distributed environments with hierarchical networks, hi-
erarchical offset measurements have been proposed in Chapter 6. This section presents experi-
mental results demonstrating the benefits of these hierarchical offset measurements [12]. First,
latency measurements confirm the assumption that offset measurements among distributed
machines are less accurate. Second, further measurements of clock condition violations
indicate that the hierarchical scheme may improve the accuracy of offset measurements. Third,
using a multi-physics application, a comparison of analysis reports calculated from timestamps
synchronized with either flat offset measurements or hierarchical offset measurements finally
demonstrates that the hierarchical scheme may increase the accuracy of the overall analysis.

Investigating the latency between the sites at FZJ and FH-BRS of the Viola grid reveals that
the latency of the external network exceeds the latency of the internal network by two orders
of magnitude. Also, the latencies of the internal networks differ significantly. Table 7.1 shows
the latencies measured with a small MPI benchmark based on MetaMPICH. The standard
deviation is an indicator for the precision of offset measurements across these links, which
confirms the assumption that offset measurements across the external network are much less
accurate in absolute terms than those across the internal networks.

Moreover, the accuracy of the hierarchical synchronization scheme was verified using another
benchmark that has been specifically designed to exchange a large number of short messages
between varying pairs of processes. In this way, the benchmark produces pairs of send and
receive events that are chronologically close to each other. Table 7.2 shows the number of
clock condition violations found in traces from this benchmark for synchronization based on

(i) a single flat offset measurement without compensation for drift (i.e., offset alignment at
program initialization),

(ii) two flat offset measurements (i.e., at program initialization and finalization) and subse-
quent linear interpolation, and

(iii) two hierarchical offset measurements (i.e., at program initialization and finalization) and
subsequent linear interpolation.

Although clock condition violations are still possible, this experiment shows that the hierar-
chical scheme was able to significantly reduce the number of clock condition violations.
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Table 7.2: Number of clock condition violations.

Measurement Number of clock condition violations
single flat offset 7560
two flat offsets 2179
two hierarchical offsets 0

The environmental-science application Metatrace [39] was used as a test application on the
Viola grid. To simulate the transport of pollutants in groundwater, Metatrace is split into two
parallel simulation submodels, Trace and Partrace. Whereas Trace simulates water flow in
porous media, Partrace computes the transport of solutes in this water flow. Trace applies
a three-dimensional domain decomposition with nearest-neighbor communication, whereas
Partrace tracks individual particles. For simulating pollutant transport in non-steady flows, the
simultaneous execution of both submodels is crucial. Metatrace couples the two submodels
through a parallel connection between the two submodels. This connection is mainly used
in one direction for the transfer of the distributed three-dimensional velocity field from
Trace to Partrace whenever Trace completes a simulation step. The mostly unidirectional
communication scheme makes Metatrace suitable for running efficiently in a metacomputing
environment. Running each submodel on a single metahost allows the internal communication
to benefit from the cluster-internal low-latency networks with synchronization as well as data
exchange between the two submodels left to the high-latency network between the different
clusters. The unidirectional and low-frequency communication between the two submodels
is done synchronously over the Viola backbone network through the node-local network
adapters. After receiving the data, Partrace replicates the received velocity field on each node
by synchronously distributing it across all Partrace nodes using a systolic loop.

The instrumented application was executed on the Viola grid using three metahosts and
subsequently analyzed. Linear offset interpolation was applied between program initialization
and finalization using either flat offset measurements or hierarchical offset measurements.
Figure 7.3 shows the respective analysis reports, where analysis data were calculated based
on timestamps synchronized with either two flat offset measurements (Figure 7.3(a)) or
two hierarchical offset measurements (Figure 7.3(b)), respectively. While the former report
shows inconsistant dependencies (i.e., sunken reliefs represent negative times), the latter
report describes consistent results and so may form the basis for a subsequent performance
optimization. For instance, the former report indicates that −62.2% of the execution time was
spent in MPI point-to-point communication calls which is impossible. In contrast, the latter
report shows that 3.7% of the execution time was spent in MPI point-to-point communication
calls. Note that this time does not include the time lost waiting in MPI point-to-point commu-
nication, because this waiting time is assigned to the respective Late Sender and Late Receiver
patterns. Indeed, this comparison shows that the hierarchical scheme significantly increases
the accuracy of the overall analysis. Although hierarchical offset measurements increase the
accuracy of timestamps to some degree, traces may, however, still exhibit clock condition
violations. Given that the CLC algorithm works best on timestamps with limited clock
errors, hierarchical offset measurements can be used to satisfy this requirement. Section 7.3.3
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(a) Two flat offset measurements.

(b) Two hierarchical offset measurements.

Figure 7.3: Analysis reports calculated based on timestamps synchronized with flat
offset measurements or hierarchical offset measurements.

presents results showing that the CLC algorithm removes residual inconsistencies in event
traces taken on metacomputers.

7.3 Logical Synchronization

This section investigates the accuracy and scalability of the extended and parallelized CLC
algorithm using traces of parallel programs taken on either cluster systems or metacomputers.
It also gives evidence of the frequency and the extent of clock condition violations in event
traces of a realistic parallel programs.
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7.3.1 Message Passing

This section focuses on message-passing applications and evaluates the CLC algorithm in
terms of its accuracy and scalability on a range of cluster systems using the SMG2000 and
LAMMPS benchmarks [10, 11]. On a more technical level, after investigating whether
clock condition violations occurred in the original traces, the efficiency and effectiveness of
the logical synchronization approach are demonstrated by calculating metrics showing the
accuracy and scalability of the correction algorithm. While the former is addressed by the
extent to which the length of local intervals is preserved, comparing the scaling behavior
of the correction algorithm with the original target application indicates the scaling quality,
because the replay-based processing scheme mimics the original communication.

The MPI version of the ASC SMG2000 benchmark [17] was used as a first test application on
MareNostrum and Cacau. The SMG2000 benchmark is a parallel semi-coarsening multigrid
solver that uses a complex communication pattern and performs a large number of non-nearest-
neighbor point-to-point communication operations. Applying a weak scaling strategy, a fixed
16×16×8 problem size per process with five solver iterations was configured. Semi-automatic
instrumentation was used to reduce the overall number of events and the call tree depth.

While linear interpolation can remove most of the clock condition violations in traces of
short runs, it is usually insufficient for longer runs. Therefore a longer run was emulated
by inserting sleep statements immediately before and after the main computational phase so
that it was carried out ten minutes after initialization and ten minutes before finalization.
This corresponds to a scenario, in which only distinct intervals of a longer run are traced
with tracing being switched off in between. Since full traces of long running applications
may consume a prohibitive amount of storage space, the “partial” tracing emulated here
mimics the recommended practice of tracing only pivotal points that warrant a more detailed
analysis. For this purposes, the artificial chronological distance to the offset measurements on
either end of the run adjusted the interpolation interval to roughly twenty minutes execution
time. However, with many realistic codes running for hours, this can still be regarded as
an optimistic assumption. Compared to true partial tracing of a longer SMG2000 run, this
method had the advantage that the total runtime including the actual computational activity
and therefore the distance between the two offset measurements was roughly independent of
the processor configurations.

The LAMMPS benchmark was used as a second test application on Jaguar. This benchmark is
a classical molecular dynamics code designed to run efficiently on parallel computers [61, 77].
It was developed at Sandia National Laboratories, a US Department of Energy (DOE) facility,
and is shipped with the Sequoia benchmark suite [3]. Automatic compiler instrumentation
was used to instrument the LAMMPS application, which ran with a scaled-size Lennard-Jones
potential causing it to execute 10000 iterations. Applying a weak scaling strategy the execution
time was approximately constant and roughly 20 min. Given that tracing the full run would
consume a prohibitively large amount of storage space, the main computational loop was
traced only between iteration 4500 and 5500. Again this “partial” tracing corresponds to the
recommended practice of tracing only points that warrant a more detailed analysis. Whereas
the sleep statements in SMG2000 caused the traces to have long periods without events, the
LAMMPS traces did not contain such periods and therefore represent more “continuous” event
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(a) SMG2000 on MareNostrum.
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(b) SMG2000 on Cacau.
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(c) LAMMPS on Jaguar.

Figure 7.4: Percentage of messages with the order of send and receive events being
reversed, of messages with clock condition violations, and of clock con-
dition violations explicitly corrected by the CLC algorithm during forward
amortization.

streams. Compared to the SMG2000 traces, the LAMMPS traces included a larger event
density (i.e., number of events per time) because filtering of uninteresting functions was not
yet supported on Jaguar.

Figure 7.4 shows the frequency of clock condition violations on MareNostrum, Cacau, and
Jaguar for differently scaled SMG2000 and LAMMPS runs. Since the number of violations
varies between runs, the numbers represent averages across three measurements for each
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Table 7.3: Average and maximum errors of message events in reversed order for
SMG2000 and LAMMPS.

Platform Avg. error [μs] Max. error [μs]
SMG2000

MareNostrum 2.6 323
Cacau 4.3 186

LAMMPS
Jaguar 2.3 96

configuration. The numbers show the percentage of messages with the order of send and
receive events being reversed in the original trace, of messages with clock condition violations
(trecv < tsend + lmin) in the original trace, and of clock condition violations explicitly
corrected by the CLC algorithm during forward amortization. The numbers also include
logical messages that can be derived by mapping collective communication onto point-to-
point semantics. When visualized, messages with the order of send and receive events being
reversed seem to flow backward in time. The number of violations explicitly corrected by
the CLC algorithm is usually smaller than the initial number of violations because some of
them are already implicitly removed during forward amortization before a correction can be
applied. On MareNostrum, around 1.0% of the messages flow backward in time, while on
Cacau the percentage ranges between 0.3 and 6%. Higher latencies on MareNostrum offer
a potential explanation for the smaller number of violations detected on this system because
higher latencies naturally insert a larger temporal distance between send and receive events
of the same message. Even though the number of inconsistent messages on Cacau seem to
decrease with growing numbers of processes, the results on MareNostrum do not confirm
a clear correlation between the two indicators. On Jaguar too, all traces contained clock
condition violations which shows that further synchronization is important to enable accurate
trace analysis. In contrast to the SMG2000 experiments, a longer execution time along
with fewer messages imposes a larger chronological distance between sending and receiving
events and therefore the percentage of violated event semantics is smaller for the LAMMPS
experiments. In addition, the 128 process experiment on Jaguar shows that the percentage
of clock condition violations corrected by the CLC algorithm can also be larger than the
percentage of clock condition violations in the original trace. Such a situation occurs, when
the corrections during forward amortization cause new violations in subsequent operations.
Table 7.3 lists the average and maximum displacement errors (i.e., the time the receive event
appears earlier than the send event) of message events in reversed order, as seen in the original
trace.

Of course, the transformation performed by the CLC algorithm raises the question of how
accurate the modified traces actually are. To answer this question, it must first be acknowl-
edged that traces with clock condition violations are inaccurate because they are inconsistent.
The behavior they reflect violates causation and is therefore impossible. The CLC algorithm
eliminates these inconsistencies, improving the accuracy of inter-process timings. A very
simple metric quantifying this improvement is the fraction of clock condition violations found
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Table 7.4: SMG2000: Relative deviation of the event distance. Unless indicated
numbers are given in percent and rounded to two digits after the decimal
point.

MareNostrum Cacau
# CPUs 64 128 256 512 1024 32 64 128

Average 0.00 0.01 0.01 0.00 0.01 0.00 0.01 0.00
Maximum 27.17 461.74 411.52 311.64 974.44 82.78 69.31 16.77

Percentage of intervals with deviation above threshold

> 0.0% 80.80 96.21 97.34 98.23 99.07 92.43 93.67 24.27
> 0.01% 0.15 0.63 0.39 0.48 0.81 0.47 0.27 0.04
> 0.1% 0.15 0.61 0.38 0.46 0.79 0.45 0.26 0.04
> 1% 0.01 0.10 0.06 0.07 0.18 0.09 0.04 0.00
> 10% 0.00 0.01 0.00 0.00 0.01 0.01 0.00 0.00
> 100% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Percentage of execution time consumed by intervals
with deviation above threshold

> 0.0% 80.51 96.22 96.86 92.20 95.17 50.37 92.50 23.00
> 0.01% 0.41 0.95 0.58 0.71 0.72 0.24 0.68 0.05
> 0.1% 0.20 0.23 0.28 0.21 0.24 0.19 0.55 0.04
> 1% 0.01 0.02 0.03 0.02 0.02 0.04 0.11 0.00
> 10% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
> 100% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

in the original trace (second column in Figure 7.4), which are all removed in the modified
trace.

However, the necessary corrections applied to concurrent events in the course of the algorithm
also modify – as a collateral effect – relative process-local event timings, which may lead to
differences in the lengths of local intervals when comparing the original with the modified
trace. Again, since the original timestamps have been taken with clocks that exhibit unstable
drifts, there is, of course, no guarantee that the measured interval lengths are correct, although
the deviation can be expected to be small in comparison to the total interval length. In addition,
the original timings are all we “know” about the target application’s local execution behavior.
For this reason, this section evaluates how this knowledge has been preserved in the modified
trace. To assess the fidelity of local timings after applying the CLC algorithm, the relative
deviation of local interval lengths is determined, considering two different types of intervals:

(i) intervals between an event and the first event of the same process, which is referred to
as the event position, and

(ii) intervals between adjacent process-local events (i.e., intervals between an event and its
immediate successor), which is referred to as the event distance.

Comparing local intervals in the original trace with their counterparts in the synchronized
trace, the maximum relative deviation of the event position across all SMG2000 measurements
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Table 7.5: LAMMPS: Relative deviation of the event distance. Unless indicated
numbers are given in percent and rounded to two digits after the decimal
point.

Jaguar
# CPUs 128 256 512 1024 2048 4096

Average 0.00 0.00 0.00 0.00 0.00 0.00
Maximum 392.28 80.55 278.71 884.76 1819.27 1459.41

Percentage of intervals with deviation above threshold

> 0.0% 32.44 9.20 7.46 38.06 65.74 43.34
> 0.01% 0.07 0.01 0.01 0.08 0.19 0.12
> 0.1% 0.07 0.01 0.01 0.08 0.18 0.12
> 1% 0.03 0.01 0.00 0.02 0.04 0.04
> 10% 0.00 0.00 0.00 0.00 0.00 0.00
> 100% 0.00 0.00 0.00 0.00 0.00 0.00

Percentage of execution time consumed by intervals
with deviation above threshold

> 0.0% 0.95 0.24 0.53 2.78 6.86 2.54
> 0.01% 0.00 0.00 0.00 0.00 0.01 0.00
> 0.1% 0.00 0.00 0.00 0.00 0.01 0.00
> 1% 0.00 0.00 0.00 0.00 0.00 0.00
> 10% 0.00 0.00 0.00 0.00 0.00 0.00
> 100% 0.00 0.00 0.00 0.00 0.00 0.00

was below 0.0001 % and the maximum absolute deviation was 425.18 μs, roughly correspond-
ing to the maximum displacement error observed (see Table 7.3). In addition, the maximum
relative deviation across all LAMMPS measurements was again negligible and the maximum
absolute deviation of 115.62 μs is also fairly consistent with the maximum displacement error
observed (see Table 7.3).

Tables 7.4 and 7.5 show the relative deviation of the event distance across different combina-
tions of platform and number of processors for the SMG2000 and LAMMPS benchmarks. The
numbers in individual columns are percentages and are rounded to two digits after the decimal
point. They represent the maximum across three measurements. To account for the relatively
long “correct” stretches artificially introduced by the sleep statements before and after the
main computation in a SMG2000 trace, only the middle section of the trace between the sleep
statements was considered. Furthermore, since deviations in larger intervals are more relevant
to performance analysis than those in smaller intervals, the average was calculated using

∑
|Δt|∑
|t|

to assign appropriate weight to larger intervals, with Δt being the absolute deviation and t
being the original interval length.
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Figure 7.5: Scalability of the parallel timestamp synchronization on MareNostrum
and Jaguar.

It can be seen that in spite of very small averages, deviations of occasionally more than 100%
are still possible. Although the backward amortization is designed to smooth sudden jumps
introduced by the logical clock with forward amortization, it can happen that a send event
cannot be advanced far enough without causing a new clock condition violation when passing
the corresponding receive event. To evaluate frequency and extent of such situations, two
different metrics were calculated:

(i) the percentage of intervals whose deviation exceeds a certain threshold and

(ii) the percentage of execution time (accumulated across all processes) consumed by
intervals whose deviation exceeds the threshold.
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Table 7.6: Distribution of reversed messages and violated messages detected during
the timestamp synchronization on Nicole.

PEPC Jacobi
# CPUs 64 128 256 32 64 128 256
# processes 16 32 64 16 32 64 128
# threads 4 4 4 2 2 2 2

Distribution of reversed messages

message-passing 100.00 100.00 100.00 100.00 100.00 100.00 100.00
shared memory 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Violated messages detected during synchronization

message-passing 44.50 46.16 42.59 81.15 84.80 81.78 40.36
shared memory 55.60 53.84 57.41 18.85 15.20 18.22 59.64

The results for SMG2000 (on MareNostrum and Cacau) and LAMMPS (on Jaguar), given in
Tables 7.4 and 7.5 respectively, indicate that larger deviations are rare and that their influence
on performance analysis results will usually be negligible. For the LAMMPS experiments
on Jaguar, a higher percentage of intervals is corrected than the time fraction consumed by
these intervals because the traces represent a more “continuous” event streams and so not all
intervals are located in the inner 1000 iterations.

Finally, Figure 7.5 compares the scaling behavior of the parallel timestamp synchronization
with the Scalasca wait-state analysis, the total analysis, and both test applications, respectively.
Note that, the total analysis includes the parallel timestamp synchronization, the Scalasca wait-
state analysis, the time for loading the traces, and the time for writing the analysis report. The
scalability was evaluated on MareNostrum and Jaguar because of their larger size compared
to Cacau. The results demonstrate that the wait-state analysis and the parallel timestamp
synchronization scale easily to thousands of processes. The fact that the wait-state analysis, the
parallel timestamp synchronization, and the execution of the respective test application exhibit
roughly equivalent scaling behavior can be explained by the replay-based nature of the two
analysis mechanisms. The execution time of LAMMPS is much larger than the execution time
of the wait-state analysis and the parallel timestamp synchronization, because it includes the
execution of all phases. In contrast to the SMG2000 experiments, the LAMMPS experiments
show that at larger scales the timestamps synchronization clearly consumes more time than
the wait-state analysis which can be explained by the aforementioned larger event density in
the LAMMPS traces. More precisely, the wait state-analysis calculates only a simple profile
metric (i.e., execution time of the respective code region) for non-communication related
events, whereas the logical clock with forward amortization determines a new timestamp for
each event. Moreover, the execution time of the parallel synchronization for LAMMPS on
Jaguar shows a higher variation across different processor configurations than the execution
time of the wait-state analysis does, which may have been caused by data dependences of the
backward amortization. By design, the backward amortization initially performs a parallel
backward replay whose runtime, of course, depends on the communication behavior of the
target application and the number of passes. Note that across all experiments, more than one
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(a) PEPC on Nicole.
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(b) Jacobi on Nicole.

Figure 7.6: Percentage of messages with the order of send and receive events
being reversed, of messages with clock condition violations, and of
clock condition violations explicitly corrected by the CLC algorithm during
forward amortization. The numbers only include point-to-point messages
and logical messages derived by mapping collective message-passing
communication onto point-to-point communication.

pass was never needed. Subsequently, discontinuities preceeding formerly violated receive
events are smoothed by recursively calculating piece-wise linear interpolation functions and
applying those to all events in the respective amortization interval. Hence, the execution time
depends on the overall number of backward amortization steps and the number of events in
the amortization intervals. Nonetheless, the fact that the total time needed by the integrated
Scalasca analysis (synchronization and wait-state analysis) including loading the traces and
writing the analysis report grows more steeply finally demonstrates that I/O (e.g, loading the
traces) will increasingly dominate the overall behavior beyond 1024 processes, rendering the
additional cost of the synchronization negligible.

7.3.2 Message Passing Combined with Shared Memory

The parallel CLC algorithm accounts for violations of message-passing and shared-memory
event semantics. Thus, the algorithm is also suitable for hybrid parallel programs that use
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Table 7.7: Average and maximum errors of message events in reversed order on
Nicole.

Platform Avg. error [μs] Max. error [μs]
PEPC

Nicole 21.7 531
Jacobi

Nicole 3.5 98

MPI and OpenMP in combination. This section evaluates the CLC algorithm in terms of
its accuracy and scalability for two hybrid test applications. It follows the same evaluation
scheme as presented in Section 7.3.1 and lists only application-specific results.

As a first test application served the Pretty Efficient Parallel Coulomb (PEPC) application
on the Nicole cluster. PEPC, which was developed at the Jülich Supercomputing Centre, is
a parallel tree-code for rapid computation of long-range Coulomb forces in N-body particle
systems [76]. In the course of this evaluation study, the original parallel processing scheme –
an MPI implementation of the Barnes-Hut tree code according to the Warren-Salmon ’Hashed
Oct Tree’ structure – was enriched with shared-memory parallelism within the solver and
integrator part of the application [5, 89].

Applying a strong scaling strategy, a fixed overall number of particles (i.e., 524288) with 100
solver iterations was configured resulting in an approximately ideal speedup behavior [2].
In our test configurations, the runtime was approximately 30, 15 and 7.5 min. Given that
automatic compiler instrumentation was used to instrument the PEPC solver and tracing the
full run would consume a prohibitively large amount of storage space, selective tracing was
applied so that the solver and integrator part were only traced during iteration 50. Similar to
the LAMMPS experiments, the traces included a large event density and did not contain long
time periods without events, as the SMG2000 experiments did.

For the purpose of accuracy evaluation, a hybrid version of the Jacobi solver [31], which
originally comes along with the OpenMP Source Code Repository of the Parallel Computing
Group at the La Laguna University, was used as a second test application on Nicole. This
benchmark solves the Poisson equation on a rectangular grid assuming uniform discretization
in each direction and Dirichlet boundary conditions. The original benchmark, a pure OpenMP
implementation, was combined with MPI-based parallelism. Automatic compiler instrumen-
tation was used and, following a strong scaling strategy, a fixed matrix size of 2000 × 2000
was configured. Similar to the SMG2000 experiments, a longer run was emulated by inserting
sleep statements immediately before and after the main computational phase so that it was
carried out ten minutes after initialization and ten minutes before finalization.

With respect to the programming model, Table 7.6 presents the distribution of reversed
messages as seen in the original trace and of violated messages detected during the synchro-
nization process. Although all traces contained clock condition violations, only violations
of message-passing event semantics occurred in the original trace. To preserve the logical
event order in the corrected trace, shared-memory event semantics, however, were temporarily
violated and subsequently restored by the CLC algorithm. While a pure message-passing
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Table 7.8: PEPC and Jacobi: Relative deviation of the event distance on Nicole.
Unless indicated numbers are given in percent and rounded to two digits
after the decimal point.

PEPC Jacobi
# CPUs 64 128 256 32 64 128 256
# processes 16 32 64 16 32 64 128
# threads per process 4 4 4 2 2 2 2
Average 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Maximum 214.97 314.23 194.40 8.25 1.94 18.32 70.51

Percentage of intervals
with deviation above threshold

> 0.0% 75.18 85.97 86.26 49.09 10.03 51.07 34.09
> 0.01% 0.19 0.23 0.25 0.17 0.04 0.10 0.09
> 0.1% 0.18 0.21 0.24 0.16 0.03 0.10 0.09
> 1% 0.03 0.04 0.06 0.02 0.00 0.01 0.01
> 10% 0.00 0.01 0.01 0.00 0.00 0.00 0.00
> 100% 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Percentage of execution time consumed by intervals
with deviation above threshold

> 0.0% 73.41 69.22 34.30 40.43 8.60 25.98 30.11
> 0.01% 0.44 0.59 0.22 0.17 0.03 0.06 0.59
> 0.1% 0.13 0.03 0.01 0.11 0.02 0.05 0.06
> 1% 0.00 0.00 0.00 0.00 0.00 0.00 0.00
> 10% 0.00 0.00 0.00 0.00 0.00 0.00 0.00
> 100% 0.00 0.00 0.00 0.00 0.00 0.00 0.00

synchronization that does not account for shared-memory event semantics would leave these
semantics violated, the CLC algorithm recognizes such situations and correctly preserves the
correct order of shared-memory events in the synchronized event stream, enabling a consistent
trace analysis. Moreover, the frequency of clock condition violations is shown in Figure 7.6
which includes the percentage of messages with the order of send and receive events being
reversed in the original trace, of messages with clock condition violations in the original trace,
and of clock condition violations explicitly corrected by the CLC algorithm during forward
amortization. Given that none of the shared-memory event semantics was violated in the
original trace, the numbers for reversed messages and violations only include point-to-point
messages and logical messages that can be derived by mapping collective message-passing
communication onto point-to-point communication. Again, all numbers represent averages
across three measurements for each configuration. The extent of clock condition violations is
shown in Table 7.7 which lists the average and maximum displacement errors (i.e., the time
the receive event appears earlier than the send event) of logical message events in reversed
order, as seen in the original trace.

To assess the fidelity of local timings after applying the CLC algorithm, the relative deviation
of the event position and the event distance was again determined. For the Jacobi experiments
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Figure 7.7: Scalability of the parallel timestamp synchronization and PEPC applica-
tion on Nicole.

only the middle section of the trace between the sleep statements was considered. The max-
imum relative deviation of the event position across all PEPC and Jacobi measurements was
negligible. The maximum absolute deviation of the event position was 535.78 μs for PEPC
and 102.67 μs for Jacobi, roughly corresponding to the respective maximum displacement
error observed (see Table 7.7).

Moreover, Table 7.8 shows the relative deviation of the event distance across different numbers
of processors for both test applications on Nicole. Again, the numbers in individual columns
are percentages and represent the maximum across three measurements. Confirming our
previous observation, it can be seen that in spite of very small averages, deviations of
occasionally more than 100% are still possible, but larger deviations are rare and their influence
on performance analysis results will usually be negligible.

In order to evaluate the runtime behavior of the hybrid synchronization method, Figure 7.7
presents scaling results of the parallel timestamp synchronization, the Scalasca wait-state
analysis, the total analysis, and the PEPC solver itself. Note that, the total analysis includes
the parallel timestamp synchronization, the Scalasca wait-state analysis, the time for loading
the traces, and the time for writing the analysis report. The results demonstrate that the
wait-state analysis, the parallel timestamp synchronization, and the execution of the PEPC
benchmark itself exhibit roughly equivalent scaling behavior. To guarantee a fair comparison
between the respective runtimes, it must be acknowledged that the wait-state analysis does
not yet support the full OpenMP pattern analysis and only calculates some basic OpenMP
metrics, whereas the parallel timestamp synchronization covers a more complete set of shared-
memory event semantics. To consider the speedup behavior in isolation, Figure 7.8 shows
speedup characteristics of the parallel timestamp synchronization, the wait-state analysis, and
the PEPC benchmark itself. Again, the numbers for each configuration represent averages
across three measurements and are normalized to the respective execution time of the 64
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Figure 7.8: Normalized execution time of the parallel timestamp synchronization on
Nicole.

thread configuration. As can be seen in this figure, the replay-based analysis mechanisms
and the PEPC application show a similar and almost ideal speedup behavior.

7.3.3 Wide-Area Communication

Given the fact that performance optimization for a single cluster is already a non-trivial task
that requires substantial tool support, we already argued that this is even more important for
metacomputing environments. Of course, when carried out in a metacomputing environment,
the accuracy of the pattern analysis also depends on the comparability of timestamps taken on
processors potentially located on geographically dispersed metahosts. Although the proposed
hierarchical offset measurement scheme already significantly increases the accuracy of the
overall analysis, traces may still exhibit clock condition violations. Desirable as a prerequisite
of the CLC algorithm, hierarchical offset measurements can be, however, used to limit the
error of timestamps. This section presents results showing that the CLC algorithm removes
remaining inconsistencies in event traces taken in metacomputing environments. It shows
evaluation results of the CLC algorithm taken on the NGS grid using the SMG2000 benchmark
and follows the same evaluation scheme as presented in Section 7.3.1, listing only application
specific results.

As a test application, the MPI version of the SMG2000 benchmark was used on the NGS
grid [17]. Similar to the former SMG2000 experiments, a fixed 16 × 16 × 8 problem size
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Figure 7.9: Percentage of messages with the order of send and receive events being
reversed, of messages with clock condition violations, and of clock con-
dition violations explicitly corrected by the CLC algorithm during forward
amortization on the NGS grid.

per process with five solver iterations was configured. A longer run was also emulated by
inserting sleep statements immediately before and after the main computational phase so that
it was carried out ten minutes after initialization and ten minutes before finalization, resulting
in an execution time of roughly 20 min.

To provide evidence of the frequency and the extent of clock condition violations, Fig-
ure 7.9 shows the percentage of messages with the order of send and receive events being
reversed in the original trace, of messages with clock condition violations in the original
trace, and of clock condition violations explicitly corrected by the CLC algorithm during
forward amortization. Again, the numbers represent averages across three measurements
for each configuration. All traces contained clock condition violations which shows that
further synchronization is important for enabling accurate analyses of event traces taken in
metacomputing environments. The maximum absolute displacement error in the original trace
was 95.16 μs, whereas the average error across all configurations was 6.72 μs.

The CLC algorithm eliminates these violated event semantics and thus improves the accuracy
of inter-process timings, taking the hierarchy of latencies found on a metacomputer into
account. However, the necessary corrections also modify relative process-local event timings
and thus the relative deviation of event position and event distance is again determined. To
account for the relatively long “correct” stretches artificially introduced by the sleep statements
before and after the main computation, only the middle section of the trace between the sleep
statements was considered. The maximum relative deviation of the event position across all
measurements was 0.37 % and the maximum absolute deviation of the event position was
99.57 μs, roughly corresponding to the maximum displacement error observed.

Moreover, Table 7.9 shows the relative deviation of the event distance across different numbers
of processors. The numbers in individual columns are percentages and are rounded to two
digits after the decimal point. They represent the maximum across three measurements. It can
be seen that larger deviations are still possible in spite of very small averages. The results given
in Table 7.9 indicate that larger deviations are rare and that their influence on performance
analysis results will usually be negligible, as in the cases previously discussed.
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Table 7.9: SMG2000: Relative deviation of the event distance on the NGS grid.
Unless indicated numbers are given in percent and rounded to two digits
after the decimal point.

NGS grid
# CPUs 16 24 32 64
# at Leeds 8 8 16 32
# at Manchester 8 16 16 32
Average 0.00 0.00 0.00 0.00
Maximum 110.88 20.23 61.83 160.13

Percentage of intervals
with deviation above threshold

> 0.0% 68.51 58.01 60.23 80.48
> 0.01% 0.43 0.98 0.28 0.58
> 0.1% 0.42 0.98 0.27 0.57
> 1% 0.03 0.05 0.03 0.08
> 10% 0.00 0.00 0.00 0.00
> 100% 0.00 0.00 0.00 0.00

Percentage of execution time consumed by intervals
with deviation above threshold

> 0.0% 66.65 54.75 39.52 74.97
> 0.01% 0.76 0.50 0.36 0.98
> 0.1% 0.16 0.10 0.07 0.11
> 1% 0.01 0.00 0.00 0.00
> 10% 0.00 0.00 0.00 0.00
> 100% 0.00 0.00 0.00 0.00

The runtime behavior of the parallel CLC algorithm was also evaluated on the NGS grid.
Figure 7.10 presents scaling results of the parallel timestamp synchronization, the Scalasca
wait-state analysis, the total analysis, and the SMG2000 benchmark itself. The results
confirm our previous observation that the wait-state analysis, the parallel timestamp syn-
chronization, and the execution of the SMG2000 benchmark itself exhibit roughly equivalent
scaling behavior – again a result of the replay-based nature of the two analysis mechanisms
and the communication-bound performance characteristics of SMG2000. Finally, we can
conclude that the extended and parallelized CLC algorithm is suitable to run efficiently in
a metacomputing environment.

7.4 Summary

This chapter presented an evaluation of the accuracy and scalability of the parallel controlled
logical clock algorithm when applied to traces of parallel programs running on a range of
cluster systems including metacomputing environments. The accuracy was investigated by

102



7.4 Summary

0

20

40

60

80

100

120

140

160

180

46234261

number of processes

w
a
ll
 c

lo
c
k
 t

im
e
 [

s
]

timestamp synchronization

wait-state analysis [s]

total analysis including I/O [s]

SMG2000 benchmark [s]
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determining the extent to which the length of local intervals was preserved. Two different
interval types were considered: (i) intervals between an event and the first event of the same
process (i.e., event position) and (ii) intervals between adjacent process-local events (i.e., event
distance). The scaling behavior of the correction algorithm was examined by comparing it with
the original target application. This indicates the quality of the scaling behavior because the
replay-based processing scheme is intended to mimic the original communication behavior.

As the results demonstrate, the algorithm eliminates inconsistent timings of concurrent events
while only marginally changing the length of intervals between local events – even if wide-
area communication is involved. Traces of hybrid parallel programs that use MPI and
OpenMP in combination only contained clock condition violations in message-passing event
semantics. However, to preserve the logical event order, shared-memory event semantics were
temporarily violated and subsequently restored by the CLC algorithm. While a pure message-
passing synchronization that does not account for shared-memory event semantics would
leave these semantics violated, the CLC algorithm recognizes such situations and preserves
the correct order of shared-memory events in the synchronized event stream. Moreover,
the parallel version of the algorithm easily scales to 4,096 application processors and shows
potential for even larger configurations. Thus, the extended and parallelized CLC algorithm is
an accurate and scalable option for removing inconsistencies in event traces.
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Chapter 8

Summary and Outlook

World-wide efforts to build machines with performance levels in the petaflops range acknowl-
edge that supercomputers are indispensable to satisfy the requirements of many applications
in science and engineering. Driven by the availability of inexpensive commodity components
produced in large quantities, clusters now represent the majority of supercomputing systems,
exhibiting a vast diversity in terms of architecture, interconnect technology, and software
environment. As the current trend in microprocessor development continues, computer
architects are realizing further performance gains by using larger numbers of moderately
fast processor cores rather than by further increasing the speed of uni-processors. Therefore,
supercomputer applications are being required to harness much higher degrees of parallelism
in order to satisfy their growing demand for computing power.

In order to effectively utilize these complex large-scale computer systems, scientists and
engineers need powerful and robust performance-analysis tools. Such tools not only help
to improve the scalability characteristics of scientific codes and thus expand their potential,
but also allow domain experts to concentrate on the science underneath rather than to spend
a major fraction of their time debugging their code and tuning it for a particular machine.
However, to cope with cross-cluster diversity, tool developers can make only little assumptions
with respect to the availability of non-standard features such as a global clock.

Event tracing is one frequently used technique by software tools with a broad spectrum
of applications ranging from performance analysis [90], performance modeling [60] and
prediction [82] to debugging [53]. In particular, event traces are helpful in understanding
the performance behavior of parallel programs since they allow the in-depth analysis of com-
munication and synchronization patterns. For instance, the Scalasca toolset scans event traces
of parallel applications for wait states that occur when processes fail to reach synchronization
points in a timely manner. Usually, events are recorded along with the time of their occurrence
to measure the temporal distance between them and/or to analyze their relative order. Typical
events being recorded include entering or leaving functions, sending or receiving messages,
and events related to collective communication or synchronization. Event traces are frequently
used to analyze MPI or hybrid MPI/OpenMP codes.

As shown in a study conducted as part of this thesis, measuring the time between concurrent
events necessitates either a global clock or well-synchronized processor-local clocks because
the accuracy of trace analyses depends on the comparability of timestamps taken on different
processors and may be adversely affected by non-synchronized clocks leading to inaccurate
relative event timings. Such inaccuracies may cause a given interval to appear shorter or
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longer than it actually was, or introduce violations of the logical event order, which requires a
message to be received only after it has been sent. Inconsistent trace data may not only lead
to false conclusions, for instance, when the impact of communication patterns is quantified,
but may also confuse the user of trace-visualization tools by causing message arrows to point
backward in time-line views. Even more strikingly, trace-analysis tools, like KOJAK, may also
cease to work in a satisfactory manner if they rely on the correct order to function properly.

While some custom-built clusters such as IBM Blue Gene [54] offer relatively accurate
global clocks, most clusters provide only processor-local clocks that are either entirely non-
synchronized or synchronized only within disjoint partitions (e.g., SMP nodes). Moreover,
external software synchronization via NTP is usually not accurate enough for the purpose of
event tracing [67]. Assuming that potentially different drifts of local clocks remain constant
over time, linear offset interpolation can be applied to map local onto global timestamps.
Since software clocks such as MPI Wtime() or gettimeofday() often leverage network
synchronization via NTP, which can lead to sudden drift adjustments, hardware clocks such
as IBM’s time base register have been identified in this thesis as alternatives with at least
approximately constant clock drifts. However, as this thesis revealed, even those suffer from
drift deviations that may compromise the accuracy of linear offset interpolation – especially
when the application runs longer than a few minutes. As a consequence, although linear offset
interpolation can restore the consistency of the trace data to some degree, many traces of MPI
applications spanning multiple nodes of a cluster system may exhibit inaccurate relative event
timestamps harming further analyses.

As the errors of single timestamps are hard to assess, violations of the logical event order can
be easily detected and offer a toehold to increase the fidelity of inter-process timings. The
controlled logical clock (CLC) algorithm [79, 80] developed by Rolf Rabenseifner accounts
for such violations in point-to-point communication by shifting message events in time as
much as needed while trying to preserve the length of local intervals. The algorithm restores
the logical event order using happened-before relations among point-to-point communication
events. This algorithm is, however, not suitable for many parallel applications because (i) it
ignores collective and shared-memory communication and (ii) as a serial algorithm it offers
only limited scalability. Additionally, while correcting point-to-point event semantics, the
algorithm may also introduce new violations, because it does not consider the logical order
of MPI collective events and OpenMP events. This thesis has addressed these shortcomings
by extending the algorithm to restore and preserve event semantics related to collective and
shared-memory operations and by parallelizing the extended version to make it suitable for
large-scale systems including computational grids.

Given that a happened-before relation between two events can be modeled as an exchange
of a logical message between both events, the basic idea behind the semantic extension is to
consider collective message-passing and shared-memory operations as being composed of
multiple logical point-to-point messages. Taking the semantics of the different flavors of
collective message-passing (e.g., 1-to-N, N-to-1) and shared-memory operations (e.g., team
creation, team termination) into account, the extensions allow the logical event order among
constituent events of these operations to be preserved and restored.

In order to accomplish the timestamp synchronization in a scalable way, both distributed
memory and parallel processing capabilities available on the target system are exploited by

106



processing separate local event traces in parallel and replaying the original communication on
as many CPUs as were used to execute the target application itself. The central idea behind the
replay is to reenact the target application’s communication based on the trace information so
that each communication operation is again executed. Hence, the timestamp synchronization
is a parallel program having as many processes and threads as the target application that
generated the trace data, resulting in a one-to-one mapping of target application and timestamp
synchronization processes and threads. As the algorithm needs event data at the sender and
receiver side of the original communication, both a parallel forward and a parallel backward
replay are used to exchange data among communicating peers involved on either side.

The extended and parallelized algorithm is also well suited for computational grids because
(i) it accounts for the hierarchy of latencies found in these systems and (ii) its distributed
memory and processing scheme establishes a global view of the trace data in the absence of
a global file system. In addition, this thesis defines the necessary infrastructure to accurately
measure clock offsets across a metacomputer with a hierarchy of latencies between its various,
geographically dispersed nodes.

The algorithm was integrated into the Scalasca trace-analysis framework. To demonstrate the
methodology in real supercomputing scenarios, the extended and parallelized algorithm was
applied to traces of realistic parallel programs taken on a range of cluster systems including
computational grids. As the results demonstrate, the algorithm eliminates inconsistent timings
of concurrent events while only marginally changing the length of intervals between local
events – even if wide-area communication is involved. Moreover, the parallel version of the
algorithm easily scales to 4,096 application processors and shows potential for even larger
configurations.

The main accomplishments and findings of this thesis can be summarized as follows:

• This thesis has shown that linear offset interpolation is insufficient to guarantee the
consistency of the logical event order in event traces.

• The CLC algorithm has been extended to synchronize the timestamps of MPI collective
events, which allows the correction of traces from a much broader range of MPI
applications.

• The CLC algorithm has been extended to synchronize the timestamps of OpenMP
shared-memory events, which – in combination with the previous extension – allows
the correction of traces from hybrid applications.

• The CLC algorithm has been parallelized to make it suitable for traces from large-scale
applications.

• The thesis has defined the necessary infrastructure to record, synchronize, and automat-
ically analyze traces in computational grids.

• It has been validated that the new version of the algorithm only marginally changes the
length of intervals between local events – even if wide-area communication is involved.

• The scalability of the extended and parallelized CLC algorithm has been demonstrated
with up to 4,096 application processes.

107



8. SUMMARY AND OUTLOOK

Future enhancements should aim at further improving both the functionality and scalability
of the parallel CLC algorithm. Currently, offset values among participating clocks are
measured at initialization and finalization and are subsequently used as parameters of the
linear correction function. Not to perturb the program, offset measurements in between are
avoided. However, Doleschal et al. [29] propose periodic offset measurements during global
synchronization operations while limiting the effort required in each step by resorting to indi-
rect measurements across several hops. More precisely, clock offset are periodically measured
at global synchronization points while the target application is running. In order to reduce the
measurement overhead, clock offsets are measured pair-wise using a communication scheme
given as a bipartite, regular graph containing a Hamilton cycle. In this way, all clock offsets
can be determined – either directly or indirectly. These offsets are subsequently used as
parameters of a piece-wise linear interpolation function. Apparently, larger temporal distances
between offset measurements decrease the measurement overhead but also the accuracy of the
piece-wise linear interpolation. The controlled logical clock may be used to remove residual
inconsistencies between such periodic offset measurements. Hence, a combined method of
periodic offset measurements and CLC algorithm is desirable.

Finally, although the extended version of the algorithm only needs information about the
respective event semantics (e.g., root sends to all other processes), the accuracy of the model
could be improved if the MPI-internal messaging inside collective operations was exposed
using interfaces such as PERUSE [1]. In this case, the decomposition into (additional) send
and receive events would be given naturally. This may be especially useful for synchronizing
collective MPI operations executed on large processor counts.
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Timestamp Synchronization of Concurrent Events 

Daniel Becker

Supercomputing is a key technological pillar of modern science and engineering, indispensable 
for solving critical problems of high complexity. However, to effectively utilize today’s super-
computing systems, scientists and engineers need powerful and robust software development 
tools. One technique widely used by such tools is event tracing. Recording time-stamped runtime 
events in event traces is especially helpful to understand the performance behavior of  parallel 
programs, since it enables the post-mortem analysis of communication and synchronization 
 patterns.

The accuracy of such analyses depends on the comparability of timestamps taken on different 
processors and may be adversely affected by nonsynchronized clocks. Inconsistent trace data 
may not only lead to false conclusions and confuse the user of trace-visualization tools but also 
may break tools if they rely on the correct event order to function properly. Although linear offset 
interpolation can restore the consistency of the trace data to some degree, time-dependent drifts 
and other inaccuracies may still disarrange the original succession of events.

The already familiar controlled logical clock algorithm accounts for such violations in point-to-
point communication. It is, however, not suitable for realistic applications because it ignores  
collective and shared-memory communication and – as a serial algorithm – offers only limited 
scalability. To address these shortcomings, the algorithm was (i) extended such that it also  
restores the event semantics of collective and shared-memory operations and (ii) parallelized  
to make it suitable for large-scale systems including computational grids. The extended and 
parallelized version was evaluated in practice by integrating it into the Scalasca trace-analysis 
framework and applying it to traces of realistic applications taken on single cluster systems and 
computational grids.

This publication was written at the Jülich Supercomputing Centre (JSC) which is an integral part  
of the Institute for Advanced Simulation (IAS). The IAS combines the Jülich simulation sciences 
and the supercomputer facility in one organizational unit. It includes those parts of the scientific 
institutes at Forschungszentrum Jülich which use simulation on supercomputers as their main 
research methodology.
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